Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning How to Demodulate from Few Pilots via Meta-Learning (1903.02184v1)

Published 6 Mar 2019 in eess.SP, cs.IT, and math.IT

Abstract: Consider an Internet-of-Things (IoT) scenario in which devices transmit sporadically using short packets with few pilot symbols. Each device transmits over a fading channel and is characterized by an amplifier with a unique non-linear transfer function. The number of pilots is generally insufficient to obtain an accurate estimate of the end-to-end channel, which includes the effects of fading and of the amplifier's distortion. This paper proposes to tackle this problem using meta-learning. Accordingly, pilots from previous IoT transmissions are used as meta-training in order to learn a demodulator that is able to quickly adapt to new end-to-end channel conditions from few pilots. Numerical results validate the advantages of the approach as compared to training schemes that either do not leverage prior transmissions or apply a standard learning algorithm on previously received data.

Citations (13)

Summary

We haven't generated a summary for this paper yet.