Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Signed Link Prediction with Sparse Data: The Role of Personality Information (1903.02125v1)

Published 6 Mar 2019 in cs.SI and cs.LG

Abstract: Predicting signed links in social networks often faces the problem of signed link data sparsity, i.e., only a small percentage of signed links are given. The problem is exacerbated when the number of negative links is much smaller than that of positive links. Boosting signed link prediction necessitates additional information to compensate for data sparsity. According to psychology theories, one rich source of such information is user's personality such as optimism and pessimism that can help determine her propensity in establishing positive and negative links. In this study, we investigate how personality information can be obtained, and if personality information can help alleviate the data sparsity problem for signed link prediction. We propose a novel signed link prediction model that enables empirical exploration of user personality via social media data. We evaluate our proposed model on two datasets of real-world signed link networks. The results demonstrate the complementary role of personality information in the signed link prediction problem. Experimental results also indicate the effectiveness of different levels of personality information for signed link data sparsity problem.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ghazaleh Beigi (13 papers)
  2. Suhas Ranganath (7 papers)
  3. Huan Liu (283 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.