Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Risk Assessment of Autonomous Vehicles Using Bayesian Defense Graphs (1903.02034v1)

Published 5 Mar 2019 in cs.CR

Abstract: Recent developments have made autonomous vehicles (AVs) closer to hitting our roads. However, their security is still a major concern among drivers as well as manufacturers. Although some work has been done to identify threats and possible solutions, a theoretical framework is needed to measure the security of AVs. In this paper, a simple security model based on defense graphs is proposed to quantitatively assess the likelihood of threats on components of an AV in the presence of available countermeasures. A Bayesian network (BN) analysis is then applied to obtain the associated security risk. In a case study, the model and the analysis are studied for GPS spoofing attacks to demonstrate the effectiveness of the proposed approach for a highly vulnerable component.

Citations (10)

Summary

We haven't generated a summary for this paper yet.