Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On finite width questionable representations of orders (1903.02028v7)

Published 5 Mar 2019 in math.CO, cs.DM, and cs.LO

Abstract: In this article, we study "questionable representations" of (partial or total) orders, introduced in our previous article "A class of orders with linear? time sorting algorithm". (Later, we consider arbitrary binary functional/relational structures instead of orders.) A "question" is the first difference between two sequences (with ordinal index) of elements of orders/sets. In finite width "questionable representations" of an order O, comparison can be solved by looking at the "question" that compares elements of a finite order O'. A corollary of a theorem by Cantor (1895)is that all countable total orders have a binary (width 2) questionable representation. We find new classes of orders on which testing isomorphism or counting the number of linear extensions can be done in polynomial time. We also present a generalization of questionable-width, called balanced tree-questionable-width, and show that if a class of binary structures has bounded tree-width or clique-width, then it has bounded balanced tree-questionable-width. But there are classes of graphs of bounded balanced tree-questionable-width and unbounded tree-width or clique-width.

Citations (1)

Summary

We haven't generated a summary for this paper yet.