Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerated Stochastic Algorithms for Convex-Concave Saddle-Point Problems (1903.01687v4)

Published 5 Mar 2019 in math.OC

Abstract: We develop stochastic first-order primal-dual algorithms to solve a class of convex-concave saddle-point problems. When the saddle function is strongly convex in the primal variable, we develop the first stochastic restart scheme for this problem. When the gradient noises obey sub-Gaussian distributions, the oracle complexity of our restart scheme is strictly better than any of the existing methods, even in the deterministic case. Furthermore, for each problem parameter of interest, whenever the lower bound exists, the oracle complexity of our restart scheme is either optimal or nearly optimal (up to a log factor). The subroutine used in this scheme is itself a new stochastic algorithm developed for the problem where the saddle function is non-strongly convex in the primal variable. This new algorithm, which is based on the primal-dual hybrid gradient framework, achieves the state-of-the-art oracle complexity and may be of independent interest.

Summary

We haven't generated a summary for this paper yet.