Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Noncoherent Multiuser Massive SIMO for Low-Latency Industrial IoT Communications (1903.01642v1)

Published 5 Mar 2019 in cs.IT and math.IT

Abstract: In this paper, we consider a multiuser massive single-input multiple-output (SIMO) enabled Industrial Internet of Things (IIoT) communication system. To reduce the latency and overhead caused by channel estimation, we assume that only the large-scale fading coefficients are available. We employ a noncoherent maximum-likelihood (ML) detector at the receiver side which does not need the instantaneous channel state information (CSI). For such a massive SIMO system, we present a new design framework to assure that each transmitted signal matrix can be uniquely determined in the noise-free case and be reliably estimated in noisy cases. The key idea is to utilize a new concept called the uniquely decomposable constellation group (UDCG) based on the practically used quadrature amplitude modulation~(QAM) constellation. To improve the average error performance when the antenna array size is scaled up, we propose a max-min Kullback-Leibler (KL) distance design by carrying out optimization over the transmitted power and the sub-constellation assignment. Finally, simulation results show that the proposed design outperforms significantly the existing max-min Euclidean distance based method in terms of error performance. Moreover, our proposed approach also has a better error performance than the conventional coherent zero-forcing (ZF) receiver with orthogonal training for cell edge users.

Citations (4)

Summary

We haven't generated a summary for this paper yet.