Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Morita equivalences for cyclotomic Hecke algebras of type B and D (1903.01580v3)

Published 4 Mar 2019 in math.RT

Abstract: We give a Morita equivalence theorem for so-called cyclotomic quotients of affine Hecke algebras of type B and D, in the spirit of a classical result of Dipper-Mathas in type A for Ariki-Koike algebras. As a consequence, the representation theory of affine Hecke algebras of type B and D reduces to the study of their cyclotomic quotients with eigenvalues in a single orbit under multiplication by $q2$ and inversion. The main step in the proof consists in a decomposition theorem for generalisations of quiver Hecke algebras that appeared recently in the study of affine Hecke algebras of type B and D. This theorem reduces the general situation of a disconnected quiver with involution to a simpler setting. To be able to treat types B and D at the same time we unify the different definitions of generalisations of quiver Hecke algebra for type B that exist in the literature.

Summary

We haven't generated a summary for this paper yet.