Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

COMIC: Towards A Compact Image Captioning Model with Attention (1903.01072v3)

Published 4 Mar 2019 in cs.CV

Abstract: Recent works in image captioning have shown very promising raw performance. However, we realize that most of these encoder-decoder style networks with attention do not scale naturally to large vocabulary size, making them difficult to be deployed on embedded system with limited hardware resources. This is because the size of word and output embedding matrices grow proportionally with the size of vocabulary, adversely affecting the compactness of these networks. To address this limitation, this paper introduces a brand new idea in the domain of image captioning. That is, we tackle the problem of compactness of image captioning models which is hitherto unexplored. We showed that, our proposed model, named COMIC for COMpact Image Captioning, achieves comparable results in five common evaluation metrics with state-of-the-art approaches on both MS-COCO and InstaPIC-1.1M datasets despite having an embedding vocabulary size that is 39x - 99x smaller. The source code and models are available at: https://github.com/jiahuei/COMIC-Compact-Image-Captioning-with-Attention

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jia Huei Tan (4 papers)
  2. Chee Seng Chan (50 papers)
  3. Joon Huang Chuah (5 papers)
Citations (38)

Summary

We haven't generated a summary for this paper yet.