Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pollicott-Ruelle resonant states and Betti numbers (1903.01010v3)

Published 3 Mar 2019 in math.SP and math.DS

Abstract: Given a closed orientable hyperbolic manifold of dimension $\neq 3$ we prove that the multiplicity of the Pollicott-Ruelle resonance of the geodesic flow on perpendicular one-forms at zero agrees with the first Betti number of the manifold. Additionally, we prove that this equality is stable under small perturbations of the Riemannian metric and simultaneous small perturbations of the geodesic vector field within the class of contact vector fields. For more general perturbations we get bounds on the multiplicity of the resonance zero on all one-forms in terms of the first and zeroth Betti numbers. Furthermore, we identify for hyperbolic manifolds further resonance spaces whose multiplicities are given by higher Betti numbers.

Summary

We haven't generated a summary for this paper yet.