Papers
Topics
Authors
Recent
Search
2000 character limit reached

Convergence of solutions in a mean-field model of go-or-grow type with reservation of sites for proliferation and cell cycle delay

Published 3 Mar 2019 in q-bio.CB | (1903.01005v1)

Abstract: We consider the mean-field approximation of an individual-based model describing cell motility and proliferation, which incorporates the volume exclusion principle, the go-or-grow hypothesis and an explicit cell cycle delay. To utilise the framework of on-lattice agent-based models, we make the assumption that cells enter mitosis only if they can secure an additional site for the daughter cell, in which case they occupy two lattice sites until the completion of mitosis. The mean-field model is expressed by a system of delay differential equations and includes variables such as the number of motile cells, proliferating cells, reserved sites and empty sites. We prove the convergence of biologically feasible solutions: eventually all available space will be filled by mobile cells, after an initial phase when the proliferating cell population is increasing then diminishing. By comparing the behaviour of the mean-field model for different parameter values and initial cell distributions, we illustrate that the total cell population may follow a logistic-type growth curve, or may grow in a step-function-like fashion.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.