Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Model-Driven Stack-Based Fully Convolutional Network for Pancreas Segmentation (1903.00832v3)

Published 3 Mar 2019 in cs.CV

Abstract: The irregular geometry and high inter-slice variability in computerized tomography (CT) scans of the human pancreas make an accurate segmentation of this crucial organ a challenging task for existing data-driven deep learning methods. To address this problem, we present a novel model-driven stack-based fully convolutional network with a sliding window fusion algorithm for pancreas segmentation, termed MDS-Net. The MDS-Net's cost function includes a data approximation term and a prior knowledge regularization term combined with a stack scheme for capturing and fusing the two-dimensional (2D) and local three-dimensional (3D) context information. Specifically, 3D CT scans are divided into multiple stacks to capture the local spatial context feature. To highlight the importance of single slices, the inter-slice relationships in the stack data are also incorporated in the MDS-Net framework. For implementing this proposed model-driven method, we create a stack-based U-Net architecture and successfully derive its back-propagation procedure for end-to-end training. Furthermore, a sliding window fusion algorithm is utilized to improve the consistency of adjacent CT slices and intra-stack. Finally, extensive quantitative assessments on the NIH Pancreas-CT dataset demonstrated higher pancreatic segmentation accuracy and reliability of MDS-Net compared to other state-of-the-art methods.

Citations (10)

Summary

We haven't generated a summary for this paper yet.