Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New series of moduli components of rank 2 semistable sheaves on $\mathbb{P}^{3}$ with singularities of mixed dimension (1903.00772v4)

Published 2 Mar 2019 in math.AG

Abstract: We construct a new infinite series of irreducible components of the Gieseker-Maruyama moduli scheme $\mathcal{M}(k), ~ k \geq 3$ of coherent semistable rank 2 sheaves with Chern classes $c_1=0,~ c_2=k,~ c_3=0$ on $\mathbb{P}3$ whose general points are sheaves with singularities of mixed dimension. These sheaves are constructed by elementary transformations of stable and properly $\mu$-semistable reflexive sheaves along disjoint union of collections of points and smooth irreducible curves which are rational or complete intersection curves. As a special member of this series we obtain a new component of $\mathcal{M}(3)$.

Summary

We haven't generated a summary for this paper yet.