Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tolling for Constraint Satisfaction in Markov Decision Process Congestion Games (1903.00747v1)

Published 2 Mar 2019 in cs.GT and math.OC

Abstract: Markov decision process (MDP) congestion game is an extension of classic congestion games, where a continuous population of selfish agents solves Markov decision processes with congestion: the payoff of a strategy decreases as more population uses it. We draw parallels between key concepts from capacitated congestion games and MDP. In particular, we show that population mass constraints in MDP congestion games are equivalent to imposing tolls/incentives on the reward function, which can be utilized by social planners to achieve auxiliary objectives. We demonstrate such methods in a simulated Seattle ride-share model, where tolls and incentives are enforced for two separate objectives: to guarantee minimum driver density in downtown Seattle, and to shift the game equilibrium towards a maximum social output.

Citations (16)

Summary

We haven't generated a summary for this paper yet.