Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Proximal Jacobian ADMM Approach for Fast Massive MIMO Signal Detection in Low-Latency Communications (1903.00738v1)

Published 2 Mar 2019 in cs.IT and math.IT

Abstract: One of the 5G promises is to provide Ultra Reliable Low Latency Communications (URLLC) which targets an end to end communication latency that is less than 1ms . The very low latency requirement of URLLC entails a lot of work in all networking layers. In this paper, we focus on the physical layer, and in particular, we propose a novel formulation of the massive MIMO uplink detection problem. We introduce an objective function that is a sum of strictly convex and separable functions based on decomposing the received vector into multiple vectors. Each vector represents the contribution of one of the transmitted symbols in the received vector. Proximal Jacobian Alternating Direction Method of Multipliers (PJADMM) is used to solve the new formulated problem in an iterative manner where at every iteration all variables are updated in parallel and in a closed form expression. The proposed algorithm provides a lower complexity and much faster processing time compared to the conventional MMSE detection technique and other iterative-based techniques, especially when the number of single antenna users is close to the number of base station (BS) antennas. This improvement is obtained without any matrix inversion. Simulation results demonstrate the efficacy of the proposed algorithm in reducing detection processing time in the multi-user uplink massive MIMO setting.

Citations (7)

Summary

We haven't generated a summary for this paper yet.