Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating Grasp Poses for a High-DOF Gripper Using Neural Networks (1903.00425v4)

Published 1 Mar 2019 in cs.RO

Abstract: We present a learning-based method for representing grasp poses of a high-DOF hand using neural networks. Due to redundancy in such high-DOF grippers, there exists a large number of equally effective grasp poses for a given target object, making it difficult for the neural network to find consistent grasp poses. We resolve this ambiguity by generating an augmented dataset that covers many possible grasps for each target object and train our neural networks using a consistency loss function to identify a one-to-one mapping from objects to grasp poses. We further enhance the quality of neural-network-predicted grasp poses using a collision loss function to avoid penetrations. We use an object dataset that combines the BigBIRD Database, the KIT Database, the YCB Database, and the Grasp Dataset to show that our method can generate high-DOF grasp poses with higher accuracy than supervised learning baselines. The quality of the grasp poses is on par with the groundtruth poses in the dataset. In addition, our method is robust and can handle noisy object models such as those constructed from multi-view depth images, allowing our method to be implemented on a 25-DOF Shadow Hand hardware platform.

Citations (70)

Summary

We haven't generated a summary for this paper yet.