Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning in Cardiology (1902.11122v5)

Published 22 Feb 2019 in cs.CV, cs.AI, and cs.LG

Abstract: The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (267)
  1. E. J. Benjamin, M. J. Blaha, S. E. Chiuve, M. Cushman, S. R. Das, R. Deo, S. D. de Ferranti, J. Floyd, M. Fornage, C. Gillespie et al., “Heart disease and stroke statistics—2017 update: a report from the american heart association,” Circulation, vol. 135, no. 10, pp. e146–e603, 2017.
  2. E. Wilkins, L. Wilson, K. Wickramasinghe, P. Bhatnagar, J. Leal, R. Luengo-Fernandez, R. Burns, M. Rayner, and N. Townsend, “European cardiovascular disease statistics 2017,” 2017.
  3. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in neural information processing systems, 2012, pp. 1097–1105.
  4. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2015, pp. 234–241.
  5. R. Collobert and J. Weston, “A unified architecture for natural language processing: Deep neural networks with multitask learning,” in Proceedings of the 25th international conference on Machine learning.   ACM, 2008, pp. 160–167.
  6. A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural networks,” in Acoustics, speech and signal processing (icassp), 2013 ieee international conference on.   IEEE, 2013, pp. 6645–6649.
  7. B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey, “Predicting the sequence specificities of dna-and rna-binding proteins by deep learning,” Nature biotechnology, vol. 33, no. 8, p. 831, 2015.
  8. Y. Bengio, Y. LeCun et al., “Scaling learning algorithms towards ai,” Large-scale kernel machines, vol. 34, no. 5, pp. 1–41, 2007.
  9. F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organization in the brain.” Psychological review, vol. 65, no. 6, p. 386, 1958.
  10. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” nature, vol. 323, no. 6088, p. 533, 1986.
  11. X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in Proceedings of the fourteenth international conference on artificial intelligence and statistics, 2011, pp. 315–323.
  12. J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a receiver operating characteristic (roc) curve.” Radiology, vol. 143, no. 1, pp. 29–36, 1982.
  13. L. R. Dice, “Measures of the amount of ecologic association between species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945.
  14. K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.
  15. G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.
  16. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
  17. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.
  18. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  19. P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion,” Journal of Machine Learning Research, vol. 11, no. Dec, pp. 3371–3408, 2010.
  20. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
  21. K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the properties of neural machine translation: Encoder-decoder approaches,” arXiv preprint arXiv:1409.1259, 2014.
  22. A. E. Johnson, T. J. Pollard, L. Shen, H. L. Li-wei, M. Feng, M. Ghassemi, B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark, “Mimic-iii, a freely accessible critical care database,” Scientific data, vol. 3, p. 160035, 2016. [Online]. Available: https://mimic.physionet.org
  23. S. Kweon, Y. Kim, M.-j. Jang, Y. Kim, K. Kim, S. Choi, C. Chun, Y.-H. Khang, and K. Oh, “Data resource profile: the korea national health and nutrition examination survey (knhanes),” International journal of epidemiology, vol. 43, no. 1, pp. 69–77, 2014. [Online]. Available: http://knhanes.cdc.go.kr
  24. W. Karlen, S. Raman, J. M. Ansermino, and G. A. Dumont, “Multiparameter respiratory rate estimation from the photoplethysmogram,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 7, pp. 1946–1953, 2013. [Online]. Available: http://www.capnobase.org/database/pulse-oximeter-ieee-tbme-benchmark/
  25. F. Nolle, F. Badura, J. Catlett, R. Bowser, and M. Sketch, “Crei-gard, a new concept in computerized arrhythmia monitoring systems,” Computers in Cardiology, vol. 13, pp. 515–518, 1986. [Online]. Available: https://physionet.org/physiobank/database/cudb/
  26. G. Moody, “A new method for detecting atrial fibrillation using rr intervals,” Computers in Cardiology, pp. 227–230, 1983. [Online]. Available: https://physionet.org/physiobank/database/afdb/
  27. D. S. Baim, W. S. Colucci, E. S. Monrad, H. S. Smith, R. F. Wright, A. Lanoue, D. F. Gauthier, B. J. Ransil, W. Grossman, and E. Braunwald, “Survival of patients with severe congestive heart failure treated with oral milrinone,” Journal of the American College of Cardiology, vol. 7, no. 3, pp. 661–670, 1986. [Online]. Available: https://www.physionet.org/physiobank/database/chfdb/
  28. A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, “Physiobank, physiotoolkit, and physionet,” Circulation, vol. 101, no. 23, pp. e215–e220, 2000. [Online]. Available: https://www.physionet.org/pn3/incartdb/
  29. S. Petrutiu, A. V. Sahakian, and S. Swiryn, “Abrupt changes in fibrillatory wave characteristics at the termination of paroxysmal atrial fibrillation in humans,” Europace, vol. 9, no. 7, pp. 466–470, 2007. [Online]. Available: https://physionet.org/pn3/ltafdb/
  30. F. Jager, A. Taddei, G. B. Moody, M. Emdin, G. Antolič, R. Dorn, A. Smrdel, C. Marchesi, and R. G. Mark, “Long-term st database: a reference for the development and evaluation of automated ischaemia detectors and for the study of the dynamics of myocardial ischaemia,” Medical and Biological Engineering and Computing, vol. 41, no. 2, pp. 172–182, 2003. [Online]. Available: https://www.physionet.org/physiobank/database/ltstdb/
  31. G. B. Moody and R. G. Mark, “The impact of the mit-bih arrhythmia database,” IEEE Engineering in Medicine and Biology Magazine, vol. 20, no. 3, pp. 45–50, 2001. [Online]. Available: https://physionet.org/challenge/2017/
  32. G. B. Moody, W. Muldrow, and R. G. Mark, “A noise stress test for arrhythmia detectors,” Computers in cardiology, vol. 11, no. 3, pp. 381–384, 1984. [Online]. Available: https://physionet.org/physiobank/database/nstdb/
  33. R. L. Goldsmith, J. T. Bigger, R. C. Steinman, and J. L. Fleiss, “Comparison of 24-hour parasympathetic activity in endurance-trained and untrained young men,” Journal of the American College of Cardiology, vol. 20, no. 3, pp. 552–558, 1992. [Online]. Available: https://www.physionet.org/physiobank/database/nsr2db/
  34. N. Iyengar, C. Peng, R. Morin, A. L. Goldberger, and L. A. Lipsitz, “Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics,” American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol. 271, no. 4, pp. R1078–R1084, 1996. [Online]. Available: https://www.physionet.org/physiobank/database/fantasia/
  35. C. Liu, D. Springer, Q. Li, B. Moody, R. A. Juan, F. J. Chorro, F. Castells, J. M. Roig, I. Silva, A. E. Johnson et al., “An open access database for the evaluation of heart sound algorithms,” Physiological Measurement, vol. 37, no. 12, p. 2181, 2016. [Online]. Available: https://physionet.org/pn3/challenge/2016/
  36. R. Bousseljot, D. Kreiseler, and A. Schnabel, “Nutzung der ekg-signaldatenbank cardiodat der ptb über das internet,” Biomedizinische Technik/Biomedical Engineering, vol. 40, no. s1, pp. 317–318, 1995.
  37. P. Laguna, R. G. Mark, A. Goldberg, and G. B. Moody, “A database for evaluation of algorithms for measurement of qt and other waveform intervals in the ecg,” in Computers in cardiology 1997.   IEEE, 1997, pp. 673–676. [Online]. Available: https://physionet.org/physiobank/database/qtdb/
  38. S. D. Greenwald, R. S. Patil, and R. G. Mark, “Improved detection and classification of arrhythmias in noise-corrupted electrocardiograms using contextual information,” in Computers in Cardiology 1990, Proceedings.   IEEE, 1990, pp. 461–464. [Online]. Available: https://physionet.org/physiobank/database/svdb/
  39. I. Silva, J. Behar, R. Sameni, T. Zhu, J. Oster, G. D. Clifford, and G. B. Moody, “Noninvasive fetal ecg: the physionet/computing in cardiology challenge 2013,” in Computing in Cardiology Conference (CinC), 2013.   IEEE, 2013, pp. 149–152. [Online]. Available: https://physionet.org/challenge/2013/
  40. M.-H. Wu and E. Y. Chang, “Deepq arrhythmia database: A large-scale dataset for arrhythmia detector evaluation,” in Proceedings of the 2nd International Workshop on Multimedia for Personal Health and Health Care.   ACM, 2017, pp. 77–80.
  41. P. Radau, Y. Lu, K. Connelly, G. Paul, A. Dick, and G. Wright, “Evaluation framework for algorithms segmenting short axis cardiac MRI,” in The MIDAS Journal - Cardiac MR Left Ventricle Segmentation Challenge, 2009. [Online]. Available: http://www.cardiacatlas.org/studies/sunnybrook-cardiac-data/
  42. C. G. Fonseca, M. Backhaus, D. A. Bluemke, R. D. Britten, J. D. Chung, B. R. Cowan, I. D. Dinov, J. P. Finn, P. J. Hunter, A. H. Kadish et al., “The cardiac atlas project - an imaging database for computational modeling and statistical atlases of the heart,” Bioinformatics, vol. 27, no. 16, pp. 2288–2295, 2011. [Online]. Available: http://www.cardiacatlas.org/challenges/lv-segmentation-challenge/
  43. C. Petitjean, M. A. Zuluaga, W. Bai, J.-N. Dacher, D. Grosgeorge, J. Caudron, S. Ruan, I. B. Ayed, M. J. Cardoso, H.-C. Chen et al., “Right ventricle segmentation from cardiac mri: a collation study,” Medical image analysis, vol. 19, no. 1, pp. 187–202, 2015. [Online]. Available: http://www.litislab.fr/?projet=1rvsc
  44. A. Asman, A. Akhondi-Asl, H. Wang, N. Tustison, B. Avants, S. K. Warfield, and B. Landman, “Miccai 2013 segmentation algorithms, theory and applications (sata) challenge results summary,” in MICCAI Challenge Workshop on Segmentation: Algorithms, Theory and Applications (SATA), 2013.
  45. D. F. Pace, A. V. Dalca, T. Geva, A. J. Powell, M. H. Moghari, and P. Golland, “Interactive whole-heart segmentation in congenital heart disease,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2015, pp. 80–88. [Online]. Available: http://segchd.csail.mit.edu/data.html
  46. O. Bernard, A. Lalande, C. Zotti, F. Cervenansky, X. Yang, P.-A. Heng, I. Cetin, K. Lekadir, O. Camara, M. A. G. Ballester et al., “Deep learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis: Is the problem solved?” IEEE Transactions on Medical Imaging, 2018.
  47. A. Andreopoulos and J. K. Tsotsos, “Efficient and generalizable statistical models of shape and appearance for analysis of cardiac mri,” Medical Image Analysis, vol. 12, no. 3, pp. 335–357, 2008. [Online]. Available: http://www.cse.yorku.ca/~mridataset/
  48. “Data science bowl cardiac challenge data,” 2016. [Online]. Available: https://www.kaggle.com/c/second-annual-data-science-bowl
  49. J. Zhang, B. Dashtbozorg, E. Bekkers, J. P. Pluim, R. Duits, and B. M. ter Haar Romeny, “Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores,” IEEE transactions on medical imaging, vol. 35, no. 12, pp. 2631–2644, 2016.
  50. J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE transactions on medical imaging, vol. 23, no. 4, pp. 501–509, 2004. [Online]. Available: https://www.isi.uu.nl/Research/Databases/DRIVE/
  51. A. Hoover, V. Kouznetsova, and M. Goldbaum, “Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response,” IEEE Transactions on Medical imaging, vol. 19, no. 3, pp. 203–210, 2000. [Online]. Available: http://cecas.clemson.edu/~ahoover/stare/
  52. C. G. Owen, A. R. Rudnicka, R. Mullen, S. A. Barman, D. Monekosso, P. H. Whincup, J. Ng, and C. Paterson, “Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (caiar) program,” Investigative ophthalmology & visual science, vol. 50, no. 5, pp. 2004–2010, 2009. [Online]. Available: https://blogs.kingston.ac.uk/retinal/chasedb1/
  53. J. Odstrcilik, R. Kolar, A. Budai, J. Hornegger, J. Jan, J. Gazarek, T. Kubena, P. Cernosek, O. Svoboda, and E. Angelopoulou, “Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database,” IET Image Processing, vol. 7, no. 4, pp. 373–383, 2013. [Online]. Available: https://www5.cs.fau.de/research/data/fundus-images/
  54. B. Graham, “Kaggle diabetic retinopathy detection competition report,” University of Warwick, 2015. [Online]. Available: https://www.kaggle.com/c/diabetic-retinopathy-detection
  55. E. Decencière, G. Cazuguel, X. Zhang, G. Thibault, J.-C. Klein, F. Meyer, B. Marcotegui, G. Quellec, M. Lamard, R. Danno et al., “Teleophta: Machine learning and image processing methods for teleophthalmology,” Irbm, vol. 34, no. 2, pp. 196–203, 2013.
  56. E. Decencière, X. Zhang, G. Cazuguel, B. Lay, B. Cochener, C. Trone, P. Gain, R. Ordonez, P. Massin, A. Erginay et al., “Feedback on a publicly distributed image database: the messidor database,” Image Analysis & Stereology, vol. 33, no. 3, pp. 231–234, 2014. [Online]. Available: http://latim.univ-brest.fr/indexfce0.html
  57. T. Kauppi, J.-K. Kämäräinen, L. Lensu, V. Kalesnykiene, I. Sorri, H. Uusitalo, and H. Kälviäinen, “Constructing benchmark databases and protocols for medical image analysis: Diabetic retinopathy,” Computational and mathematical methods in medicine, vol. 2013, 2013. [Online]. Available: http://www.it.lut.fi/project/imageret/diaretdb1/
  58. M. Niemeijer, B. Van Ginneken, M. J. Cree, A. Mizutani, G. Quellec, C. I. Sánchez, B. Zhang, R. Hornero, M. Lamard, C. Muramatsu et al., “Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs,” IEEE transactions on medical imaging, vol. 29, no. 1, pp. 185–195, 2010. [Online]. Available: http://roc.healthcare.uiowa.edu/
  59. S. Balocco, C. Gatta, F. Ciompi, A. Wahle, P. Radeva, S. Carlier, G. Unal, E. Sanidas, J. Mauri, X. Carillo et al., “Standardized evaluation methodology and reference database for evaluating ivus image segmentation,” Computerized medical imaging and graphics, vol. 38, no. 2, pp. 70–90, 2014. [Online]. Available: http://www.cvc.uab.es/IVUSchallenge2011/
  60. C. Sudlow, J. Gallacher, N. Allen, V. Beral, P. Burton, J. Danesh, P. Downey, P. Elliott, J. Green, M. Landray et al., “Uk biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age,” PLoS medicine, vol. 12, no. 3, p. e1001779, 2015. [Online]. Available: https://biobank.ctsu.ox.ac.uk/crystal/download.cgi
  61. H. Kirişli, M. Schaap, C. Metz, A. Dharampal, W. B. Meijboom, S.-L. Papadopoulou, A. Dedic, K. Nieman, M. De Graaf, M. Meijs et al., “Standardized evaluation framework for evaluating coronary artery stenosis detection, stenosis quantification and lumen segmentation algorithms in computed tomography angiography,” Medical image analysis, vol. 17, no. 8, pp. 859–876, 2013. [Online]. Available: http://www.coronary.bigr.nl/stensoses/
  62. P. H. Charlton, T. Bonnici, L. Tarassenko, D. A. Clifton, R. Beale, and P. J. Watkinson, “An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram,” Physiological measurement, vol. 37, no. 4, p. 610, 2016. [Online]. Available: https://peterhcharlton.github.io/RRest/vortal_dataset.html
  63. C. Tobon-Gomez, A. J. Geers, J. Peters, J. Weese, K. Pinto, R. Karim, M. Ammar, A. Daoudi, J. Margeta, Z. Sandoval et al., “Benchmark for algorithms segmenting the left atrium from 3d ct and mri datasets,” IEEE transactions on medical imaging, vol. 34, no. 7, pp. 1460–1473, 2015. [Online]. Available: http://www.cardiacatlas.org/challenges/left-atrium-segmentation-challenge/
  64. X. Zhuang and J. Shen, “Multi-scale patch and multi-modality atlases for whole heart segmentation of mri,” Medical image analysis, vol. 31, pp. 77–87, 2016. [Online]. Available: http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/
  65. S. Gopalswamy, P. J. Tighe, and P. Rashidi, “Deep recurrent neural networks for predicting intraoperative and postoperative outcomes and trends,” in Biomedical & Health Informatics (BHI), 2017 IEEE EMBS International Conference on.   IEEE, 2017, pp. 361–364.
  66. E. Choi, A. Schuetz, W. F. Stewart, and J. Sun, “Using recurrent neural network models for early detection of heart failure onset,” Journal of the American Medical Informatics Association, vol. 24, no. 2, pp. 361–370, 2016.
  67. S. Purushotham, C. Meng, Z. Che, and Y. Liu, “Benchmarking deep learning models on large healthcare datasets,” Journal of biomedical informatics, vol. 83, pp. 112–134, 2018.
  68. E. C. Polley and M. J. Van Der Laan, “Super learner in prediction,” 2010.
  69. Y. J. Kim, Y.-G. Lee, J. W. Kim, J. J. Park, B. Ryu, and J.-W. Ha, “Highrisk prediction from electronic medical records via deep attention networks,” arXiv preprint arXiv:1712.00010, 2017.
  70. H. C. Hsiao, S. H. Chen, and J. J. Tsai, “Deep learning for risk analysis of specific cardiovascular diseases using environmental data and outpatient records,” in Bioinformatics and Bioengineering (BIBE), 2016 IEEE 16th International Conference on.   IEEE, 2016, pp. 369–372.
  71. Z. Huang, W. Dong, H. Duan, and J. Liu, “A regularized deep learning approach for clinical risk prediction of acute coronary syndrome using electronic health records,” IEEE Transactions on Biomedical Engineering, vol. 65, no. 5, pp. 956–968, 2018.
  72. J. Kim, U. Kang, and Y. Lee, “Statistics and deep belief network-based cardiovascular risk prediction,” Healthcare informatics research, vol. 23, no. 3, pp. 169–175, 2017.
  73. S. Faziludeen and P. Sabiq, “Ecg beat classification using wavelets and svm,” in Information & Communication Technologies (ICT), 2013 IEEE Conference on.   IEEE, 2013, pp. 815–818.
  74. M. Zubair, J. Kim, and C. Yoon, “An automated ecg beat classification system using convolutional neural networks,” in IT Convergence and Security (ICITCS), 2016 6th International Conference on.   IEEE, 2016, pp. 1–5.
  75. D. Li, J. Zhang, Q. Zhang, and X. Wei, “Classification of ecg signals based on 1d convolution neural network,” in e-Health Networking, Applications and Services (Healthcom), 2017 IEEE 19th International Conference on.   IEEE, 2017, pp. 1–6.
  76. S. Kiranyaz, T. Ince, and M. Gabbouj, “Real-time patient-specific ecg classification by 1-d convolutional neural networks,” IEEE Transactions on Biomedical Engineering, vol. 63, no. 3, pp. 664–675, 2016.
  77. A. Isin and S. Ozdalili, “Cardiac arrhythmia detection using deep learning,” Procedia Computer Science, vol. 120, pp. 268–275, 2017.
  78. K. Luo, J. Li, Z. Wang, and A. Cuschieri, “Patient-specific deep architectural model for ecg classification,” Journal of healthcare engineering, vol. 2017, 2017.
  79. C. Jiang, S. Song, and M. Q.-H. Meng, “Heartbeat classification system based on modified stacked denoising autoencoders and neural networks,” in Information and Automation (ICIA), 2017 IEEE International Conference on.   IEEE, 2017, pp. 511–516.
  80. J. Yang, Y. Bai, F. Lin, M. Liu, Z. Hou, and X. Liu, “A novel electrocardiogram arrhythmia classification method based on stacked sparse auto-encoders and softmax regression,” International Journal of Machine Learning and Cybernetics, pp. 1–8, 2017.
  81. Z. Wu, X. Ding, G. Zhang, X. Xu, X. Wang, Y. Tao, and C. Ju, “A novel features learning method for ecg arrhythmias using deep belief networks,” in Digital Home (ICDH), 2016 6th International Conference on.   IEEE, 2016, pp. 192–196.
  82. M.-H. Wu, E. J. Chang, and T.-H. Chu, “Personalizing a generic ecg heartbeat classification for arrhythmia detection: A deep learning approach,” in 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR).   IEEE, 2018, pp. 92–99.
  83. P. Rajpurkar, A. Y. Hannun, M. Haghpanahi, C. Bourn, and A. Y. Ng, “Cardiologist-level arrhythmia detection with convolutional neural networks,” arXiv preprint arXiv:1707.01836, 2017.
  84. U. R. Acharya, H. Fujita, O. S. Lih, Y. Hagiwara, J. H. Tan, and M. Adam, “Automated detection of arrhythmias using different intervals of tachycardia ecg segments with convolutional neural network,” Information sciences, vol. 405, pp. 81–90, 2017.
  85. P. Schwab, G. C. Scebba, J. Zhang, M. Delai, and W. Karlen, “Beat by beat: Classifying cardiac arrhythmias with recurrent neural networks,” Computing, vol. 44, p. 1, 2017.
  86. Z. Yao, Z. Zhu, and Y. Chen, “Atrial fibrillation detection by multi-scale convolutional neural networks,” in Information Fusion (Fusion), 2017 20th International Conference on.   IEEE, 2017, pp. 1–6.
  87. Y. Xia, N. Wulan, K. Wang, and H. Zhang, “Detecting atrial fibrillation by deep convolutional neural networks,” Computers in biology and medicine, vol. 93, pp. 84–92, 2018.
  88. R. S. Andersen, A. Peimankar, and S. Puthusserypady, “A deep learning approach for real-time detection of atrial fibrillation,” Expert Systems with Applications, 2018.
  89. P. Xiong, H. Wang, M. Liu, and X. Liu, “Denoising autoencoder for eletrocardiogram signal enhancement,” Journal of Medical Imaging and Health Informatics, vol. 5, no. 8, pp. 1804–1810, 2015.
  90. B. Taji, A. D. Chan, and S. Shirmohammadi, “False alarm reduction in atrial fibrillation detection using deep belief networks,” IEEE Transactions on Instrumentation and Measurement, 2017.
  91. R. Xiao, Y. Xu, M. M. Pelter, R. Fidler, F. Badilini, D. W. Mortara, and X. Hu, “Monitoring significant st changes through deep learning,” Journal of electrocardiology, 2018.
  92. M. M. Al Rahhal, Y. Bazi, H. AlHichri, N. Alajlan, F. Melgani, and R. R. Yager, “Deep learning approach for active classification of electrocardiogram signals,” Information Sciences, vol. 345, pp. 340–354, 2016.
  93. H. Abrishami, M. Campbell, C. Han, R. Czosek, and X. Zhou, “P-qrs-t localization in ecg using deep learning,” in Biomedical & Health Informatics (BHI), 2018 IEEE EMBS International Conference on.   IEEE, 2018, pp. 210–213.
  94. J. Wu, Y. Bao, S.-C. Chan, H. Wu, L. Zhang, and X.-G. Wei, “Myocardial infarction detection and classification - a new multi-scale deep feature learning approach,” in Digital Signal Processing (DSP), 2016 IEEE International Conference on.   IEEE, 2016, pp. 309–313.
  95. T. Reasat and C. Shahnaz, “Detection of inferior myocardial infarction using shallow convolutional neural networks,” in Humanitarian Technology Conference (R10-HTC), 2017 IEEE Region 10.   IEEE, 2017, pp. 718–721.
  96. W. Zhong, L. Liao, X. Guo, and G. Wang, “A deep learning approach for fetal qrs complex detection,” Physiological measurement, vol. 39, no. 4, p. 045004, 2018.
  97. V. J. R. Ripoll, A. Wojdel, E. Romero, P. Ramos, and J. Brugada, “Ecg assessment based on neural networks with pretraining,” Applied Soft Computing, vol. 49, pp. 399–406, 2016.
  98. L. Jin and J. Dong, “Classification of normal and abnormal ecg records using lead convolutional neural network and rule inference,” Science China Information Sciences, vol. 60, no. 7, p. 078103, 2017.
  99. Y. Liu, Y. Huang, J. Wang, L. Liu, and J. Luo, “Detecting premature ventricular contraction in children with deep learning,” Journal of Shanghai Jiaotong University (Science), vol. 23, no. 1, pp. 66–73, 2018.
  100. B. Hwang, J. You, T. Vaessen, I. Myin-Germeys, C. Park, and B.-T. Zhang, “Deep ecgnet: An optimal deep learning framework for monitoring mental stress using ultra short-term ecg signals,” TELEMEDICINE and e-HEALTH, 2018.
  101. J. Pan and W. J. Tompkins, “A real-time qrs detection algorithm,” IEEE transactions on biomedical engineering, no. 3, pp. 230–236, 1985.
  102. U. R. Acharya, H. Fujita, S. L. Oh, U. Raghavendra, J. H. Tan, M. Adam, A. Gertych, and Y. Hagiwara, “Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network,” Future Generation Computer Systems, vol. 79, pp. 952–959, 2018.
  103. U. R. Acharya, H. Fujita, O. S. Lih, M. Adam, J. H. Tan, and C. K. Chua, “Automated detection of coronary artery disease using different durations of ecg segments with convolutional neural network,” Knowledge-Based Systems, vol. 132, pp. 62–71, 2017.
  104. U. R. Acharya, H. Fujita, S. L. Oh, Y. Hagiwara, J. H. Tan, M. Adam, and R. S. Tan, “Deep convolutional neural network for the automated diagnosis of congestive heart failure using ecg signals,” Applied Intelligence, pp. 1–12, 2018.
  105. U. R. Acharya, H. Fujita, S. L. Oh, Y. Hagiwara, J. H. Tan, and M. Adam, “Application of deep convolutional neural network for automated detection of myocardial infarction using ecg signals,” Information Sciences, vol. 415, pp. 190–198, 2017.
  106. J. Rubin, R. Abreu, A. Ganguli, S. Nelaturi, I. Matei, and K. Sricharan, “Recognizing abnormal heart sounds using deep learning,” arXiv preprint arXiv:1707.04642, 2017.
  107. D. Kucharski, D. Grochala, M. Kajor, and E. Kańtoch, “A deep learning approach for valve defect recognition in heart acoustic signal,” in International Conference on Information Systems Architecture and Technology.   Springer, 2017, pp. 3–14.
  108. J. P. Dominguez-Morales, A. F. Jimenez-Fernandez, M. J. Dominguez-Morales, and G. Jimenez-Moreno, “Deep neural networks for the recognition and classification of heart murmurs using neuromorphic auditory sensors,” IEEE transactions on biomedical circuits and systems, vol. 12, no. 1, pp. 24–34, 2018.
  109. C. Potes, S. Parvaneh, A. Rahman, and B. Conroy, “Ensemble of feature-based and deep learning-based classifiers for detection of abnormal heart sounds,” in Computing in Cardiology Conference (CinC), 2016.   IEEE, 2016, pp. 621–624.
  110. H. Ryu, J. Park, and H. Shin, “Classification of heart sound recordings using convolution neural network,” in Computing in Cardiology Conference (CinC), 2016.   IEEE, 2016, pp. 1153–1156.
  111. T.-E. Chen, S.-I. Yang, L.-T. Ho, K.-H. Tsai, Y.-H. Chen, Y.-F. Chang, Y.-H. Lai, S.-S. Wang, Y. Tsao, and C.-C. Wu, “S1 and s2 heart sound recognition using deep neural networks,” IEEE Transactions on Biomedical Engineering, vol. 64, no. 2, pp. 372–380, 2017.
  112. S. Lee and J.-H. Chang, “Deep learning ensemble with asymptotic techniques for oscillometric blood pressure estimation,” Computer methods and programs in biomedicine, vol. 151, pp. 1–13, 2017.
  113. F. Pan, P. He, C. Liu, T. Li, A. Murray, and D. Zheng, “Variation of the korotkoff stethoscope sounds during blood pressure measurement: Analysis using a convolutional neural network,” IEEE journal of biomedical and health informatics, vol. 21, no. 6, pp. 1593–1598, 2017.
  114. S. P. Shashikumar, A. J. Shah, Q. Li, G. D. Clifford, and S. Nemati, “A deep learning approach to monitoring and detecting atrial fibrillation using wearable technology,” in Biomedical & Health Informatics (BHI), 2017 IEEE EMBS International Conference on.   IEEE, 2017, pp. 141–144.
  115. I. Gotlibovych, S. Crawford, D. Goyal, J. Liu, Y. Kerem, D. Benaron, D. Yilmaz, G. Marcus, and Y. Li, “End-to-end deep learning from raw sensor data: Atrial fibrillation detection using wearables,” arXiv preprint arXiv:1807.10707, 2018.
  116. M.-Z. Poh, Y. C. Poh, P.-H. Chan, C.-K. Wong, L. Pun, W. W.-C. Leung, Y.-F. Wong, M. M.-Y. Wong, D. W.-S. Chu, and C.-W. Siu, “Diagnostic assessment of a deep learning system for detecting atrial fibrillation in pulse waveforms,” Heart, pp. heartjnl–2018, 2018.
  117. B. Ballinger, J. Hsieh, A. Singh, N. Sohoni, J. Wang, G. H. Tison, G. M. Marcus, J. M. Sanchez, C. Maguire, J. E. Olgin et al., “Deepheart: Semi-supervised sequence learning for cardiovascular risk prediction,” arXiv preprint arXiv:1802.02511, 2018.
  118. A. Jiménez-Fernández, E. Cerezuela-Escudero, L. Miró-Amarante, M. J. Domínguez-Morales, F. Gomez-Rodriguez, A. Linares-Barranco, and G. Jiménez-Moreno, “A binaural neuromorphic auditory sensor for fpga: A spike signal processing approach.” IEEE Trans. Neural Netw. Learning Syst., vol. 28, no. 4, pp. 804–818, 2017.
  119. S. Lee and J. H. Chang, “Oscillometric blood pressure estimation based on deep learning,” IEEE Transactions on Industrial Informatics, vol. 13, no. 2, pp. 461–472, 2017.
  120. S. Lee and J.-H. Chang, “Deep belief networks ensemble for blood pressure estimation,” IEEE Access, vol. 5, pp. 9962–9972, 2017.
  121. S. Lee and J. H. Chang, “Deep boltzmann regression with mimic features for oscillometric blood pressure estimation,” IEEE Sensors Journal, vol. 17, no. 18, pp. 5982–5993, 2017.
  122. G. Sebastiani and P. Barone, “Mathematical principles of basic magnetic resonance imaging in medicine,” Signal Processing, vol. 25, no. 2, pp. 227–250, 1991.
  123. L. K. Tan, Y. M. Liew, E. Lim, and R. A. McLaughlin, “Cardiac left ventricle segmentation using convolutional neural network regression,” in Biomedical Engineering and Sciences (IECBES), 2016 IEEE EMBS Conference on.   IEEE, 2016, pp. 490–493.
  124. L. V. Romaguera, M. G. F. Costa, F. P. Romero, and C. F. F. Costa Filho, “Left ventricle segmentation in cardiac mri images using fully convolutional neural networks,” in Medical Imaging 2017: Computer-Aided Diagnosis, vol. 10134.   International Society for Optics and Photonics, 2017, p. 101342Z.
  125. R. P. Poudel, P. Lamata, and G. Montana, “Recurrent fully convolutional neural networks for multi-slice mri cardiac segmentation,” in Reconstruction, Segmentation, and Analysis of Medical Images.   Springer, 2016, pp. 83–94.
  126. C. Rupprecht, E. Huaroc, M. Baust, and N. Navab, “Deep active contours,” arXiv preprint arXiv:1607.05074, 2016.
  127. T. Anh Ngo and G. Carneiro, “Fully automated non-rigid segmentation with distance regularized level set evolution initialized and constrained by deep-structured inference,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2014, pp. 3118–3125.
  128. M. Avendi, A. Kheradvar, and H. Jafarkhani, “A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac mri,” Medical image analysis, vol. 30, pp. 108–119, 2016.
  129. H. Yang, J. Sun, H. Li, L. Wang, and Z. Xu, “Deep fusion net for multi-atlas segmentation: Application to cardiac mr images,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2016, pp. 521–528.
  130. G. Luo, S. Dong, K. Wang, and H. Zhang, “Cardiac left ventricular volumes prediction method based on atlas location and deep learning,” in Bioinformatics and Biomedicine (BIBM), 2016 IEEE International Conference on.   IEEE, 2016, pp. 1604–1610.
  131. X. Yang, Z. Zeng, and S. Yi, “Deep convolutional neural networks for automatic segmentation of left ventricle cavity from cardiac magnetic resonance images,” IET Computer Vision, vol. 11, no. 8, pp. 643–649, 2017.
  132. L. K. Tan, Y. M. Liew, E. Lim, and R. A. McLaughlin, “Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine mr sequences,” Medical image analysis, vol. 39, pp. 78–86, 2017.
  133. A. H. Curiale, F. D. Colavecchia, P. Kaluza, R. A. Isoardi, and G. Mato, “Automatic myocardial segmentation by using a deep learning network in cardiac mri,” in Computer Conference (CLEI), 2017 XLIII Latin American.   IEEE, 2017, pp. 1–6.
  134. F. Liao, X. Chen, X. Hu, and S. Song, “Estimation of the volume of the left ventricle from mri images using deep neural networks,” IEEE Transactions on Cybernetics, 2017.
  135. O. Emad, I. A. Yassine, and A. S. Fahmy, “Automatic localization of the left ventricle in cardiac mri images using deep learning,” in Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE.   IEEE, 2015, pp. 683–686.
  136. C. Zotti, Z. Luo, O. Humbert, A. Lalande, and P.-M. Jodoin, “Gridnet with automatic shape prior registration for automatic mri cardiac segmentation,” in International Workshop on Statistical Atlases and Computational Models of the Heart.   Springer, 2017, pp. 73–81.
  137. J. Patravali, S. Jain, and S. Chilamkurthy, “2d-3d fully convolutional neural networks for cardiac mr segmentation,” in International Workshop on Statistical Atlases and Computational Models of the Heart.   Springer, 2017, pp. 130–139.
  138. F. Isensee, P. F. Jaeger, P. M. Full, I. Wolf, S. Engelhardt, and K. H. Maier-Hein, “Automatic cardiac disease assessment on cine-mri via time-series segmentation and domain specific features,” in International Workshop on Statistical Atlases and Computational Models of the Heart.   Springer, 2017, pp. 120–129.
  139. P. V. Tran, “A fully convolutional neural network for cardiac segmentation in short-axis mri,” arXiv preprint arXiv:1604.00494, 2016.
  140. W. Bai, O. Oktay, M. Sinclair, H. Suzuki, M. Rajchl, G. Tarroni, B. Glocker, A. King, P. M. Matthews, and D. Rueckert, “Semi-supervised learning for network-based cardiac mr image segmentation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2017, pp. 253–260.
  141. J. Lieman-Sifry, M. Le, F. Lau, S. Sall, and D. Golden, “Fastventricle: Cardiac segmentation with enet,” in International Conference on Functional Imaging and Modeling of the Heart.   Springer, 2017, pp. 127–138.
  142. A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A deep neural network architecture for real-time semantic segmentation,” arXiv preprint arXiv:1606.02147, 2016.
  143. H. B. Winther, C. Hundt, B. Schmidt, C. Czerner, J. Bauersachs, F. Wacker, and J. Vogel-Claussen, “nu-net: Deep learning for generalized biventricular cardiac mass and function parameters,” arXiv preprint arXiv:1706.04397, 2017.
  144. X. Du, W. Zhang, H. Zhang, J. Chen, Y. Zhang, J. C. Warrington, G. Brahm, and S. Li, “Deep regression segmentation for cardiac bi-ventricle mr images,” IEEE Access, 2018.
  145. A. Giannakidis, K. Kamnitsas, V. Spadotto, J. Keegan, G. Smith, B. Glocker, D. Rueckert, S. Ernst, M. A. Gatzoulis, D. J. Pennell et al., “Fast fully automatic segmentation of the severely abnormal human right ventricle from cardiovascular magnetic resonance images using a multi-scale 3d convolutional neural network,” in Signal-Image Technology & Internet-Based Systems (SITIS), 2016 12th International Conference on.   IEEE, 2016, pp. 42–46.
  146. J. M. Wolterink, T. Leiner, M. A. Viergever, and I. Išgum, “Dilated convolutional neural networks for cardiovascular mr segmentation in congenital heart disease,” in Reconstruction, Segmentation, and Analysis of Medical Images.   Springer, 2016, pp. 95–102.
  147. J. Li, R. Zhang, L. Shi, and D. Wang, “Automatic whole-heart segmentation in congenital heart disease using deeply-supervised 3d fcn,” in Reconstruction, Segmentation, and Analysis of Medical Images.   Springer, 2016, pp. 111–118.
  148. L. Yu, X. Yang, J. Qin, and P.-A. Heng, “3d fractalnet: dense volumetric segmentation for cardiovascular mri volumes,” in Reconstruction, Segmentation, and Analysis of Medical Images.   Springer, 2016, pp. 103–110.
  149. C. Payer, D. Štern, H. Bischof, and M. Urschler, “Multi-label whole heart segmentation using cnns and anatomical label configurations,” in International Workshop on Statistical Atlases and Computational Models of the Heart.   Springer, 2017, pp. 190–198.
  150. A. Mortazi, J. Burt, and U. Bagci, “Multi-planar deep segmentation networks for cardiac substructures from mri and ct,” in International Workshop on Statistical Atlases and Computational Models of the Heart.   Springer, 2017, pp. 199–206.
  151. X. Yang, C. Bian, L. Yu, D. Ni, and P.-A. Heng, “Hybrid loss guided convolutional networks for whole heart parsing,” in International Workshop on Statistical Atlases and Computational Models of the Heart.   Springer, 2017, pp. 215–223.
  152. G. Yang, X. Zhuang, H. Khan, S. Haldar, E. Nyktari, X. Ye, G. Slabaugh, T. Wong, R. Mohiaddin, J. Keegan et al., “Segmenting atrial fibrosis from late gadolinium-enhanced cardiac mri by deep-learned features with stacked sparse auto-encoders,” in Annual Conference on Medical Image Understanding and Analysis.   Springer, 2017, pp. 195–206.
  153. L. Zhang, A. Gooya, B. Dong, R. Hua, S. E. Petersen, P. Medrano-Gracia, and A. F. Frangi, “Automated quality assessment of cardiac mr images using convolutional neural networks,” in International Workshop on Simulation and Synthesis in Medical Imaging.   Springer, 2016, pp. 138–145.
  154. B. Kong, Y. Zhan, M. Shin, T. Denny, and S. Zhang, “Recognizing end-diastole and end-systole frames via deep temporal regression network,” in International conference on medical image computing and computer-assisted intervention.   Springer, 2016, pp. 264–272.
  155. F. Yang, Y. He, M. Hussain, H. Xie, and P. Lei, “Convolutional neural network for the detection of end-diastole and end-systole frames in free-breathing cardiac magnetic resonance imaging,” Computational and mathematical methods in medicine, vol. 2017, 2017.
  156. C. Xu, L. Xu, Z. Gao, S. Zhao, H. Zhang, Y. Zhang, X. Du, S. Zhao, D. Ghista, and S. Li, “Direct detection of pixel-level myocardial infarction areas via a deep-learning algorithm,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2017, pp. 240–249.
  157. W. Xue, G. Brahm, S. Pandey, S. Leung, and S. Li, “Full left ventricle quantification via deep multitask relationships learning,” Medical image analysis, vol. 43, pp. 54–65, 2018.
  158. X. Zhen, Z. Wang, A. Islam, M. Bhaduri, I. Chan, and S. Li, “Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation,” Medical image analysis, vol. 30, pp. 120–129, 2016.
  159. C. Biffi, O. Oktay, G. Tarroni, W. Bai, A. De Marvao, G. Doumou, M. Rajchl, R. Bedair, S. Prasad, S. Cook et al., “Learning interpretable anatomical features through deep generative models: Application to cardiac remodeling,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2018, pp. 464–471.
  160. O. Oktay, W. Bai, M. Lee, R. Guerrero, K. Kamnitsas, J. Caballero, A. de Marvao, S. Cook, D. O’Regan, and D. Rueckert, “Multi-input cardiac image super-resolution using convolutional neural networks,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2016, pp. 246–254.
  161. L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs,” IEEE transactions on pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834–848, 2018.
  162. C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, “Deeply-supervised nets,” in Artificial Intelligence and Statistics, 2015, pp. 562–570.
  163. R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1440–1448.
  164. O. Oktay, E. Ferrante, K. Kamnitsas, M. Heinrich, W. Bai, J. Caballero, S. A. Cook, A. de Marvao, T. Dawes, D. P. O‘Regan et al., “Anatomically constrained neural networks (acnns): Application to cardiac image enhancement and segmentation,” IEEE transactions on medical imaging, vol. 37, no. 2, pp. 384–395, 2018.
  165. E. Konukoglu, “An exploration of 2d and 3d deep learning techniques for cardiac mr image segmentation,” in Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges: 8th International Workshop, STACOM 2017, Held in Conjunction with MICCAI 2017, Quebec City, Canada, September 10-14, 2017, Revised Selected Papers, vol. 10663.   Springer, 2018, p. 111.
  166. M. D. Abràmoff, M. K. Garvin, and M. Sonka, “Retinal imaging and image analysis,” IEEE reviews in biomedical engineering, vol. 3, pp. 169–208, 2010.
  167. S. Wang, Y. Yin, G. Cao, B. Wei, Y. Zheng, and G. Yang, “Hierarchical retinal blood vessel segmentation based on feature and ensemble learning,” Neurocomputing, vol. 149, pp. 708–717, 2015.
  168. L. Zhou, Q. Yu, X. Xu, Y. Gu, and J. Yang, “Improving dense conditional random field for retinal vessel segmentation by discriminative feature learning and thin-vessel enhancement,” Computer methods and programs in biomedicine, vol. 148, pp. 13–25, 2017.
  169. Y. Chen, “A labeling-free approach to supervising deep neural networks for retinal blood vessel segmentation,” arXiv preprint arXiv:1704.07502, 2017.
  170. D. Maji, A. Santara, P. Mitra, and D. Sheet, “Ensemble of deep convolutional neural networks for learning to detect retinal vessels in fundus images,” arXiv preprint arXiv:1603.04833, 2016.
  171. H. Fu, Y. Xu, D. W. K. Wong, and J. Liu, “Retinal vessel segmentation via deep learning network and fully-connected conditional random fields,” in Biomedical Imaging (ISBI), 2016 IEEE 13th International Symposium on.   IEEE, 2016, pp. 698–701.
  172. A. Wu, Z. Xu, M. Gao, M. Buty, and D. J. Mollura, “Deep vessel tracking: A generalized probabilistic approach via deep learning,” in Biomedical Imaging (ISBI), 2016 IEEE 13th International Symposium on.   IEEE, 2016, pp. 1363–1367.
  173. Q. Li, B. Feng, L. Xie, P. Liang, H. Zhang, and T. Wang, “A cross-modality learning approach for vessel segmentation in retinal images,” IEEE transactions on medical imaging, vol. 35, no. 1, pp. 109–118, 2016.
  174. A. Lahiri, A. G. Roy, D. Sheet, and P. K. Biswas, “Deep neural ensemble for retinal vessel segmentation in fundus images towards achieving label-free angiography,” in Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the.   IEEE, 2016, pp. 1340–1343.
  175. A. Oliveira, S. Pereira, and C. A. Silva, “Augmenting data when training a cnn for retinal vessel segmentation: How to warp?” in Bioengineering (ENBENG), 2017 IEEE 5th Portuguese Meeting on.   IEEE, 2017, pp. 1–4.
  176. H. A. Leopold, J. Orchard, J. Zelek, and V. Lakshminarayanan, “Use of gabor filters and deep networks in the segmentation of retinal vessel morphology,” in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XV, vol. 10068.   International Society for Optics and Photonics, 2017, p. 100680R.
  177. H. A. Leopold, J. Orchard, J. S. Zelek, and V. Lakshminarayanan, “Pixelbnn: Augmenting the pixelcnn with batch normalization and the presentation of a fast architecture for retinal vessel segmentation,” arXiv preprint arXiv:1712.06742, 2017.
  178. J. Mo and L. Zhang, “Multi-level deep supervised networks for retinal vessel segmentation,” International journal of computer assisted radiology and surgery, vol. 12, no. 12, pp. 2181–2193, 2017.
  179. M. Melinščak, P. Prentašić, and S. Lončarić, “Retinal vessel segmentation using deep neural networks,” in VISAPP 2015 (10th International Conference on Computer Vision Theory and Applications), 2015.
  180. A. Sengur, Y. Guo, Ü. Budak, and L. J. Vespa, “A retinal vessel detection approach using convolution neural network,” in Artificial Intelligence and Data Processing Symposium (IDAP), 2017 International.   IEEE, 2017, pp. 1–4.
  181. M. I. Meyer, P. Costa, A. Galdran, A. M. Mendonça, and A. Campilho, “A deep neural network for vessel segmentation of scanning laser ophthalmoscopy images,” in International Conference Image Analysis and Recognition.   Springer, 2017, pp. 507–515.
  182. M. Haloi, “Improved microaneurysm detection using deep neural networks,” arXiv preprint arXiv:1505.04424, 2015.
  183. L. Giancardo, K. Roberts, and Z. Zhao, “Representation learning for retinal vasculature embeddings,” in Fetal, Infant and Ophthalmic Medical Image Analysis.   Springer, 2017, pp. 243–250.
  184. J. I. Orlando, E. Prokofyeva, M. del Fresno, and M. B. Blaschko, “An ensemble deep learning based approach for red lesion detection in fundus images,” Computer methods and programs in biomedicine, vol. 153, pp. 115–127, 2018.
  185. M. J. van Grinsven, B. van Ginneken, C. B. Hoyng, T. Theelen, and C. I. Sánchez, “Fast convolutional neural network training using selective data sampling: Application to hemorrhage detection in color fundus images,” IEEE transactions on medical imaging, vol. 35, no. 5, pp. 1273–1284, 2016.
  186. F. Girard and F. Cheriet, “Artery/vein classification in fundus images using cnn and likelihood score propagation,” in Signal and Information Processing (GlobalSIP), 2017 IEEE Global Conference on.   IEEE, 2017, pp. 720–724.
  187. R. Welikala, P. Foster, P. Whincup, A. Rudnicka, C. Owen, D. Strachan, S. Barman et al., “Automated arteriole and venule classification using deep learning for retinal images from the uk biobank cohort,” Computers in biology and medicine, vol. 90, pp. 23–32, 2017.
  188. H. Pratt, B. M. Williams, J. Y. Ku, C. Vas, E. McCann, B. Al-Bander, Y. Zhao, F. Coenen, and Y. Zheng, “Automatic detection and distinction of retinal vessel bifurcations and crossings in colour fundus photography,” Journal of Imaging, vol. 4, no. 1, p. 4, 2017.
  189. R. Poplin, A. V. Varadarajan, K. Blumer, Y. Liu, M. V. McConnell, G. S. Corrado, L. Peng, and D. R. Webster, “Predicting cardiovascular risk factors from retinal fundus photographs using deep learning,” arXiv preprint arXiv:1708.09843, 2017.
  190. H. Leopold, J. Orchard, J. Zelek, and V. Lakshminarayanan, “Segmentation and feature extraction of retinal vascular morphology,” in Medical Imaging 2017: Image Processing, vol. 10133.   International Society for Optics and Photonics, 2017, p. 101330V.
  191. H. Pratt, B. M. Williams, J. Ku, F. Coenen, and Y. Zheng, “Automatic detection and identification of retinal vessel junctions in colour fundus photography,” in Annual Conference on Medical Image Understanding and Analysis.   Springer, 2017, pp. 27–37.
  192. N. Lessmann, I. Išgum, A. A. Setio, B. D. de Vos, F. Ciompi, P. A. de Jong, M. Oudkerk, P. T. M. Willem, M. A. Viergever, and B. van Ginneken, “Deep convolutional neural networks for automatic coronary calcium scoring in a screening study with low-dose chest ct,” in Medical Imaging 2016: Computer-Aided Diagnosis, vol. 9785.   International Society for Optics and Photonics, 2016, p. 978511.
  193. R. Shadmi, V. Mazo, O. Bregman-Amitai, and E. Elnekave, “Fully-convolutional deep-learning based system for coronary calcium score prediction from non-contrast chest ct,” in Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on.   IEEE, 2018, pp. 24–28.
  194. C. Cano-Espinosa, G. González, G. R. Washko, M. Cazorla, and R. S. J. Estépar, “Automated agatston score computation in non-ecg gated ct scans using deep learning,” in Proceedings of SPIE–the International Society for Optical Engineering, vol. 10574, 2018.
  195. J. M. Wolterink, T. Leiner, B. D. de Vos, R. W. van Hamersvelt, M. A. Viergever, and I. Išgum, “Automatic coronary artery calcium scoring in cardiac ct angiography using paired convolutional neural networks,” Medical image analysis, vol. 34, pp. 123–136, 2016.
  196. G. Santini, D. Della Latta, N. Martini, G. Valvano, A. Gori, A. Ripoli, C. L. Susini, L. Landini, and D. Chiappino, “An automatic deep learning approach for coronary artery calcium segmentation,” in EMBEC & NBC 2017.   Springer, 2017, pp. 374–377.
  197. K. López-Linares, L. Kabongo, N. Lete, G. Maclair, M. Ceresa, A. García-Familiar, I. Macía, and M. Á. G. Ballester, “Dcnn-based automatic segmentation and quantification of aortic thrombus volume: Influence of the training approach,” in Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis.   Springer, 2017, pp. 29–38.
  198. H. A. Hong and U. Sheikh, “Automatic detection, segmentation and classification of abdominal aortic aneurysm using deep learning,” in Signal Processing & Its Applications (CSPA), 2016 IEEE 12th International Colloquium on.   IEEE, 2016, pp. 242–246.
  199. H. Liu, J. Feng, Z. Feng, J. Lu, and J. Zhou, “Left atrium segmentation in ct volumes with fully convolutional networks,” in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support.   Springer, 2017, pp. 39–46.
  200. B. D. de Vos, J. M. Wolterink, P. A. de Jong, M. A. Viergever, and I. Išgum, “2d image classification for 3d anatomy localization: employing deep convolutional neural networks,” in Medical Imaging 2016: Image Processing, vol. 9784.   International Society for Optics and Photonics, 2016, p. 97841Y.
  201. M. Moradi, Y. Gur, H. Wang, P. Prasanna, and T. Syeda-Mahmood, “A hybrid learning approach for semantic labeling of cardiac ct slices and recognition of body position,” in Biomedical Imaging (ISBI), 2016 IEEE 13th International Symposium on.   IEEE, 2016, pp. 1418–1421.
  202. Y. Zheng, D. Liu, B. Georgescu, H. Nguyen, and D. Comaniciu, “3d deep learning for efficient and robust landmark detection in volumetric data,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2015, pp. 565–572.
  203. J. C. Montoya, Y. Li, C. Strother, and G.-H. Chen, “Deep learning angiography (dla): three-dimensional c-arm cone beam ct angiography generated from deep learning method using a convolutional neural network,” in Medical Imaging 2018: Physics of Medical Imaging, vol. 10573.   International Society for Optics and Photonics, 2018, p. 105731N.
  204. M. Zreik, N. Lessmann, R. W. van Hamersvelt, J. M. Wolterink, M. Voskuil, M. A. Viergever, T. Leiner, and I. Išgum, “Deep learning analysis of the myocardium in coronary ct angiography for identification of patients with functionally significant coronary artery stenosis,” Medical image analysis, vol. 44, pp. 72–85, 2018.
  205. F. Commandeur, M. Goeller, J. Betancur, S. Cadet, M. Doris, X. Chen, D. S. Berman, P. J. Slomka, B. K. Tamarappoo, and D. Dey, “Deep learning for quantification of epicardial and thoracic adipose tissue from non-contrast ct,” IEEE Transactions on Medical Imaging, 2018.
  206. M. A. Gülsün, G. Funka-Lea, P. Sharma, S. Rapaka, and Y. Zheng, “Coronary centerline extraction via optimal flow paths and cnn path pruning,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2016, pp. 317–325.
  207. G. Carneiro, J. C. Nascimento, and A. Freitas, “The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods,” IEEE Transactions on Image Processing, vol. 21, no. 3, pp. 968–982, 2012.
  208. J. C. Nascimento and G. Carneiro, “Multi-atlas segmentation using manifold learning with deep belief networks,” in Biomedical Imaging (ISBI), 2016 IEEE 13th International Symposium on.   IEEE, 2016, pp. 867–871.
  209. H. Chen, Y. Zheng, J.-H. Park, P.-A. Heng, and S. K. Zhou, “Iterative multi-domain regularized deep learning for anatomical structure detection and segmentation from ultrasound images,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2016, pp. 487–495.
  210. A. Madani, R. Arnaout, M. Mofrad, and R. Arnaout, “Fast and accurate view classification of echocardiograms using deep learning,” npj Digital Medicine, vol. 1, no. 1, p. 6, 2018.
  211. J. F. Silva, J. M. Silva, A. Guerra, S. Matos, and C. Costa, “Ejection fraction classification in transthoracic echocardiography using a deep learning approach,” in 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS).   IEEE, 2018, pp. 123–128.
  212. X. Gao, W. Li, M. Loomes, and L. Wang, “A fused deep learning architecture for viewpoint classification of echocardiography,” Information Fusion, vol. 36, pp. 103–113, 2017.
  213. A. H. Abdi, C. Luong, T. Tsang, J. Jue, K. Gin, D. Yeung, D. Hawley, R. Rohling, and P. Abolmaesumi, “Quality assessment of echocardiographic cine using recurrent neural networks: Feasibility on five standard view planes,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2017, pp. 302–310.
  214. F. C. Ghesu, E. Krubasik, B. Georgescu, V. Singh, Y. Zheng, J. Hornegger, and D. Comaniciu, “Marginal space deep learning: efficient architecture for volumetric image parsing,” IEEE transactions on medical imaging, vol. 35, no. 5, pp. 1217–1228, 2016.
  215. D. P. Perrin, A. Bueno, A. Rodriguez, G. R. Marx, and J. Pedro, “Application of convolutional artificial neural networks to echocardiograms for differentiating congenital heart diseases in a pediatric population,” in Medical Imaging 2017: Computer-Aided Diagnosis, vol. 10134.   International Society for Optics and Photonics, 2017, p. 1013431.
  216. M. Moradi, Y. Guo, Y. Gur, M. Negahdar, and T. Syeda-Mahmood, “A cross-modality neural network transform for semi-automatic medical image annotation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2016, pp. 300–307.
  217. A. G. Roy, S. Conjeti, S. G. Carlier, K. Houissa, A. König, P. K. Dutta, A. F. Laine, N. Navab, A. Katouzian, and D. Sheet, “Multiscale distribution preserving autoencoders for plaque detection in intravascular optical coherence tomography,” in Biomedical Imaging (ISBI), 2016 IEEE 13th International Symposium on.   IEEE, 2016, pp. 1359–1362.
  218. Y. L. Yong, L. K. Tan, R. A. McLaughlin, K. H. Chee, and Y. M. Liew, “Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography,” Journal of biomedical optics, vol. 22, no. 12, p. 126005, 2017.
  219. M. Xu, J. Cheng, A. Li, J. A. Lee, D. W. K. Wong, A. Taruya, A. Tanaka, N. Foin, and P. Wong, “Fibroatheroma identification in intravascular optical coherence tomography images using deep features,” in Engineering in Medicine and Biology Society (EMBC), 2017 39th Annual International Conference of the IEEE.   IEEE, 2017, pp. 1501–1504.
  220. A. Abdolmanafi, L. Duong, N. Dahdah, and F. Cheriet, “Deep feature learning for automatic tissue classification of coronary artery using optical coherence tomography,” Biomedical optics express, vol. 8, no. 2, pp. 1203–1220, 2017.
  221. K. Lekadir, A. Galimzianova, À. Betriu, M. del Mar Vila, L. Igual, D. L. Rubin, E. Fernández, P. Radeva, and S. Napel, “A convolutional neural network for automatic characterization of plaque composition in carotid ultrasound,” IEEE journal of biomedical and health informatics, vol. 21, no. 1, pp. 48–55, 2017.
  222. N. Tajbakhsh, J. Y. Shin, R. T. Hurst, C. B. Kendall, and J. Liang, “Automatic interpretation of carotid intima–media thickness videos using convolutional neural networks,” in Deep Learning for Medical Image Analysis.   Elsevier, 2017, pp. 105–131.
  223. F. Tom and D. Sheet, “Simulating patho-realistic ultrasound images using deep generative networks with adversarial learning,” in Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on.   IEEE, 2018, pp. 1174–1177.
  224. J. Wang, H. Ding, F. A. Bidgoli, B. Zhou, C. Iribarren, S. Molloi, and P. Baldi, “Detecting cardiovascular disease from mammograms with deep learning,” IEEE transactions on medical imaging, vol. 36, no. 5, pp. 1172–1181, 2017.
  225. X. Liu, S. Wang, Y. Deng, and K. Chen, “Coronary artery calcification (cac) classification with deep convolutional neural networks,” in Medical Imaging 2017: Computer-Aided Diagnosis, vol. 10134.   International Society for Optics and Photonics, 2017, p. 101340M.
  226. M. Pavoni, Y. Chang, and Ö. Smedby, “Image denoising with convolutional neural networks for percutaneous transluminal coronary angioplasty,” in European Congress on Computational Methods in Applied Sciences and Engineering.   Springer, 2017, pp. 255–265.
  227. J. J. Nirschl, A. Janowczyk, E. G. Peyster, R. Frank, K. B. Margulies, M. D. Feldman, and A. Madabhushi, “A deep-learning classifier identifies patients with clinical heart failure using whole-slide images of h&e tissue,” PloS one, vol. 13, no. 4, p. e0192726, 2018.
  228. J. Betancur, F. Commandeur, M. Motlagh, T. Sharir, A. J. Einstein, S. Bokhari, M. B. Fish, T. D. Ruddy, P. Kaufmann, A. J. Sinusas et al., “Deep learning for prediction of obstructive disease from fast myocardial perfusion spect: a multicenter study,” JACC: Cardiovascular Imaging, 2018.
  229. N. Lessmann, B. van Ginneken, M. Zreik, P. A. de Jong, B. D. de Vos, M. A. Viergever, and I. Išgum, “Automatic calcium scoring in low-dose chest ct using deep neural networks with dilated convolutions,” IEEE Transactions on Medical Imaging, 2017.
  230. M. Zreik, T. Leiner, B. D. de Vos, R. W. van Hamersvelt, M. A. Viergever, and I. Išgum, “Automatic segmentation of the left ventricle in cardiac ct angiography using convolutional neural networks,” in Biomedical Imaging (ISBI), 2016 IEEE 13th International Symposium on.   IEEE, 2016, pp. 40–43.
  231. Q. Le and T. Mikolov, “Distributed representations of sentences and documents,” in International Conference on Machine Learning, 2014, pp. 1188–1196.
  232. T. Kubo, T. Akasaka, J. Shite, T. Suzuki, S. Uemura, B. Yu, K. Kozuma, H. Kitabata, T. Shinke, M. Habara et al., “Oct compared with ivus in a coronary lesion assessment: the opus-class study,” JACC: Cardiovascular Imaging, vol. 6, no. 10, pp. 1095–1104, 2013.
  233. V. Mayer-Schönberger, “Big data for cardiology: novel discovery?” European heart journal, vol. 37, no. 12, pp. 996–1001, 2015.
  234. C. Austin and F. Kusumoto, “The application of big data in medicine: current implications and future directions,” Journal of Interventional Cardiac Electrophysiology, vol. 47, no. 1, pp. 51–59, 2016.
  235. H. Greenspan, B. van Ginneken, and R. M. Summers, “Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique,” IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1153–1159, 2016.
  236. R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep learning for healthcare: review, opportunities and challenges,” Briefings in bioinformatics, 2017.
  237. C. Krittanawong, “The rise of artificial intelligence and the uncertain future for physicians,” 2017.
  238. G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van der Laak, B. van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Medical image analysis, vol. 42, pp. 60–88, 2017.
  239. A. Qayyum, S. M. Anwar, M. Majid, M. Awais, and M. Alnowami, “Medical image analysis using convolutional neural networks: A review,” arXiv preprint arXiv:1709.02250, 2017.
  240. M. Henglin, G. Stein, P. V. Hushcha, J. Snoek, A. B. Wiltschko, and S. Cheng, “Machine learning approaches in cardiovascular imaging,” Circulation: Cardiovascular Imaging, vol. 10, no. 10, p. e005614, 2017.
  241. G. W. Blair, M. V. Hernandez, M. J. Thrippleton, F. N. Doubal, and J. M. Wardlaw, “Advanced neuroimaging of cerebral small vessel disease,” Current treatment options in cardiovascular medicine, vol. 19, no. 7, p. 56, 2017.
  242. P. J. Slomka, D. Dey, A. Sitek, M. Motwani, D. S. Berman, and G. Germano, “Cardiac imaging: working towards fully-automated machine analysis & interpretation,” Expert review of medical devices, vol. 14, no. 3, pp. 197–212, 2017.
  243. G. Carneiro, Y. Zheng, F. Xing, and L. Yang, “Review of deep learning methods in mammography, cardiovascular, and microscopy image analysis,” in Deep Learning and Convolutional Neural Networks for Medical Image Computing.   Springer, 2017, pp. 11–32.
  244. K. W. Johnson, J. T. Soto, B. S. Glicksberg, K. Shameer, R. Miotto, M. Ali, E. Ashley, and J. T. Dudley, “Artificial intelligence in cardiology,” Journal of the American College of Cardiology, vol. 71, no. 23, pp. 2668–2679, 2018.
  245. F. Jiang, Y. Jiang, H. Zhi, Y. Dong, H. Li, S. Ma, Y. Wang, Q. Dong, H. Shen, and Y. Wang, “Artificial intelligence in healthcare: past, present and future,” Stroke and Vascular Neurology, pp. svn–2017, 2017.
  246. E.-J. Lee, Y.-H. Kim, N. Kim, and D.-W. Kang, “Deep into the brain: Artificial intelligence in stroke imaging,” Journal of stroke, vol. 19, no. 3, p. 277, 2017.
  247. B. C. Loh and P. H. Then, “Deep learning for cardiac computer-aided diagnosis: benefits, issues & solutions,” mHealth, vol. 3, 2017.
  248. C. Krittanawong, H. Zhang, Z. Wang, M. Aydar, and T. Kitai, “Artificial intelligence in precision cardiovascular medicine,” Journal of the American College of Cardiology, vol. 69, no. 21, pp. 2657–2664, 2017.
  249. J. Gomez, R. Doukky, G. Germano, and P. Slomka, “New trends in quantitative nuclear cardiology methods,” Current Cardiovascular Imaging Reports, vol. 11, no. 1, p. 1, 2018.
  250. K. Shameer, K. W. Johnson, B. S. Glicksberg, J. T. Dudley, and P. P. Sengupta, “Machine learning in cardiovascular medicine: are we there yet?” Heart, pp. heartjnl–2017, 2018.
  251. S. Shrestha and P. P. Sengupta, “Machine learning for nuclear cardiology: The way forward,” 2018.
  252. A. Kikuchi and T. Kawakami, “Future of artificial intelligence and nuclear cardiology,” Annals of Nuclear Cardiology, vol. 4, no. 1, pp. 79–82, 2018.
  253. S. E. Awan, F. Sohel, F. M. Sanfilippo, M. Bennamoun, and G. Dwivedi, “Machine learning in heart failure: ready for prime time,” Current opinion in cardiology, vol. 33, no. 2, pp. 190–195, 2018.
  254. O. Faust, Y. Hagiwara, T. J. Hong, O. S. Lih, and U. R. Acharya, “Deep learning for healthcare applications based on physiological signals: a review,” Computer methods and programs in biomedicine, vol. 161, pp. 1–13, 2018.
  255. D. S. Liebeskind, “Artificial intelligence in stroke care: Deep learning or superficial insight?” EBioMedicine, 2018.
  256. G. Hinton, “Deep learning—a technology with the potential to transform health care,” JAMA, 2018.
  257. A. L. Beam and I. S. Kohane, “Big data and machine learning in health care,” Jama, vol. 319, no. 13, pp. 1317–1318, 2018.
  258. J. A. Damen, L. Hooft, E. Schuit, T. P. Debray, G. S. Collins, I. Tzoulaki, C. M. Lassale, G. C. Siontis, V. Chiocchia, C. Roberts et al., “Prediction models for cardiovascular disease risk in the general population: systematic review,” bmj, vol. 353, p. i2416, 2016.
  259. D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014.
  260. K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional networks: Visualising image classification models and saliency maps,” arXiv preprint arXiv:1312.6034, 2013.
  261. S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,” in Advances in Neural Information Processing Systems, 2017, pp. 3856–3866.
  262. P. Afshar, A. Mohammadi, and K. N. Plataniotis, “Brain tumor type classification via capsule networks,” arXiv preprint arXiv:1802.10200, 2018.
  263. T. Iesmantas and R. Alzbutas, “Convolutional capsule network for classification of breast cancer histology images,” in International Conference Image Analysis and Recognition.   Springer, 2018, pp. 853–860.
  264. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural information processing systems, 2014, pp. 2672–2680.
  265. F. Mahmood and N. J. Durr, “Deep learning and conditional random fields-based depth estimation and topographical reconstruction from conventional endoscopy,” Medical Image Analysis, 2018.
  266. P. F. Christ, M. E. A. Elshaer, F. Ettlinger, S. Tatavarty, M. Bickel, P. Bilic, M. Rempfler, M. Armbruster, F. Hofmann, M. D’Anastasi et al., “Automatic liver and lesion segmentation in ct using cascaded fully convolutional neural networks and 3d conditional random fields,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2016, pp. 415–423.
  267. J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng, “Multimodal deep learning,” in Proceedings of the 28th international conference on machine learning (ICML-11), 2011, pp. 689–696.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (129)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com