Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integrability and Identification in Multinomial Choice Models (1902.11017v4)

Published 28 Feb 2019 in econ.EM

Abstract: McFadden's random-utility model of multinomial choice has long been the workhorse of applied research. We establish shape-restrictions under which multinomial choice-probability functions can be rationalized via random-utility models with nonparametric unobserved heterogeneity and general income-effects. When combined with an additional restriction, the above conditions are equivalent to the canonical Additive Random Utility Model. The sufficiency-proof is constructive, and facilitates nonparametric identification of preference-distributions without requiring identification-at-infinity type arguments. A corollary shows that Slutsky-symmetry, a key condition for previous rationalizability results, is equivalent to absence of income-effects. Our results imply theory-consistent nonparametric bounds for choice-probabilities on counterfactual budget-sets. They also apply to widely used random-coefficient models, upon conditioning on observable choice characteristics. The theory of partial differential equations plays a key role in our analysis.

Summary

We haven't generated a summary for this paper yet.