Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

When a Tweet is Actually Sexist. A more Comprehensive Classification of Different Online Harassment Categories and The Challenges in NLP (1902.10584v1)

Published 27 Feb 2019 in cs.CL

Abstract: Sexism is very common in social media and makes the boundaries of freedom tighter for feminist and female users. There is still no comprehensive classification of sexism attracting natural language processing techniques. Categorizing sexism in social media in the categories of hostile or benevolent sexism are so general that simply ignores the other types of sexism happening in these media. This paper proposes a more comprehensive and in-depth categories of online harassment in social media e.g. twitter into the following categories, "Indirect harassment", "Information threat", "sexual harassment", "Physical harassment" and "Not sexist" and address the challenge of labeling them along with presenting the classification result of the categories. It is preliminary work applying machine learning to learn the concept of sexism and distinguishes itself by looking at more precise categories of sexism in social media.

Citations (22)

Summary

We haven't generated a summary for this paper yet.