Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attributes-aided Part Detection and Refinement for Person Re-identification (1902.10528v1)

Published 27 Feb 2019 in cs.CV

Abstract: Person attributes are often exploited as mid-level human semantic information to help promote the performance of person re-identification task. In this paper, unlike most existing methods simply taking attribute learning as a classification problem, we perform it in a different way with the motivation that attributes are related to specific local regions, which refers to the perceptual ability of attributes. We utilize the process of attribute detection to generate corresponding attribute-part detectors, whose invariance to many influences like poses and camera views can be guaranteed. With detected local part regions, our model extracts local features to handle the body part misalignment problem, which is another major challenge for person re-identification. The local descriptors are further refined by fused attribute information to eliminate interferences caused by detection deviation. Extensive experiments on two popular benchmarks with attribute annotations demonstrate the effectiveness of our model and competitive performance compared with state-of-the-art algorithms.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Shuzhao Li (3 papers)
  2. Huimin Yu (26 papers)
  3. Wei Huang (318 papers)
  4. Jing Zhang (731 papers)
Citations (49)