Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interference Management in NOMA-based Fog-Radio Access Networks via Joint Scheduling and Power Adaptation (1902.10388v1)

Published 27 Feb 2019 in cs.NI

Abstract: Non-Orthogonal Multiple Access (NOMA) and Fog Radio Access Networks (FRAN) are promising candidates within the 5G and beyond systems. This work examines the benefit of adopting NOMA in an FRAN architecture with constrained capacity fronthaul. The paper proposes methods for optimizing joint scheduling and power adaptation in the downlink of a NOMA-based FRAN with multiple resource blocks (RB). We consider a mixed-integer optimization problem which maximizes a network-wide rate-based utility function subject to fronthaul-capacity constraints, so as to determine i) the user-to-RB assignment, ii) the allocated power to each RB, and iii) the power split levels of the NOMA users in each RB. The paper proposes a feasible decoupled solution for such non-convex optimization problem using a three-step hybrid centralized/distributed approach. The proposed solution complies with FRAN operation that aims to partially shift the network control to the FAPs, so as to overcome delays due to fronthaul rate constraints. The paper proposes and compares two distinct methods for solving the assignment problem, namely the Hungarian method, and the Multiple Choice Knapsack method. The power allocation and the NOMA power split optimization, on the other hand, are solved using the alternating direction method of multipliers (ADMM). Simulations results illustrate the advantages of the proposed methods compared to different baseline schemes including the conventional Orthogonal Multiple Access (OMA), for different utility functions and different network environments.

Citations (7)

Summary

We haven't generated a summary for this paper yet.