Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Distributionally Robust Optimization Method for Adversarial Multiple Kernel Learning (1902.10365v2)

Published 27 Feb 2019 in cs.LG and stat.ML

Abstract: We propose a novel data-driven method to learn a mixture of multiple kernels with random features that is certifiabaly robust against adverserial inputs. Specifically, we consider a distributionally robust optimization of the kernel-target alignment with respect to the distribution of training samples over a distributional ball defined by the Kullback-Leibler (KL) divergence. The distributionally robust optimization problem can be recast as a min-max optimization whose objective function includes a log-sum term. We develop a mini-batch biased stochastic primal-dual proximal method to solve the min-max optimization. To debias the minibatch algorithm, we use the Gumbel perturbation technique to estimate the log-sum term. We establish theoretical guarantees for the performance of the proposed multiple kernel learning method. In particular, we prove the consistency, asymptotic normality, stochastic equicontinuity, and the minimax rate of the empirical estimators. In addition, based on the notion of Rademacher and Gaussian complexities, we establish distributionally robust generalization bounds that are tighter than previous known bounds. More specifically, we leverage matrix concentration inequalities to establish distributionally robust generalization bounds. We validate our kernel learning approach for classification with the kernel SVMs on synthetic dataset generated by sampling multvariate Gaussian distributions with differernt variance structures. We also apply our kernel learning approach to the MNIST data-set and evaluate its robustness to perturbation of input images under different adversarial models. More specifically, we examine the robustness of the proposed kernel model selection technique against FGSM, PGM, C&W, and DDN adversarial perturbations, and compare its performance with alternative state-of-the-art multiple kernel learning paradigms.

Citations (2)

Summary

We haven't generated a summary for this paper yet.