Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Deep Graph-Based Text Representation for Sentiment Polarity Applications (1902.10247v3)

Published 23 Feb 2019 in cs.CL, cs.LG, and stat.ML

Abstract: Over the last few years, machine learning over graph structures has manifested a significant enhancement in text mining applications such as event detection, opinion mining, and news recommendation. One of the primary challenges in this regard is structuring a graph that encodes and encompasses the features of textual data for the effective machine learning algorithm. Besides, exploration and exploiting of semantic relations is regarded as a principal step in text mining applications. However, most of the traditional text mining methods perform somewhat poor in terms of employing such relations. In this paper, we propose a sentence-level graph-based text representation which includes stop words to consider semantic and term relations. Then, we employ a representation learning approach on the combined graphs of sentences to extract the latent and continuous features of the documents. Eventually, the learned features of the documents are fed into a deep neural network for the sentiment classification task. The experimental results demonstrate that the proposed method substantially outperforms the related sentiment analysis approaches based on several benchmark datasets. Furthermore, our method can be generalized on different datasets without any dependency on pre-trained word embeddings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Kayvan Bijari (2 papers)
  2. Hadi Zare (26 papers)
  3. Emad Kebriaei (3 papers)
  4. Hadi Veisi (18 papers)
Citations (36)