Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey on Graph Processing Accelerators: Challenges and Opportunities (1902.10130v1)

Published 26 Feb 2019 in cs.DC

Abstract: Graph is a well known data structure to represent the associated relationships in a variety of applications, e.g., data science and machine learning. Despite a wealth of existing efforts on developing graph processing systems for improving the performance and/or energy efficiency on traditional architectures, dedicated hardware solutions, also referred to as graph processing accelerators, are essential and emerging to provide the benefits significantly beyond those pure software solutions can offer. In this paper, we conduct a systematical survey regarding the design and implementation of graph processing accelerator. Specifically, we review the relevant techniques in three core components toward a graph processing accelerator: preprocessing, parallel graph computation and runtime scheduling. We also examine the benchmarks and results in existing studies for evaluating a graph processing accelerator. Interestingly, we find that there is not an absolute winner for all three aspects in graph acceleration due to the diverse characteristics of graph processing and complexity of hardware configurations. We finially present to discuss several challenges in details, and to further explore the opportunities for the future research.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Chuangyi Gui (1 paper)
  2. Long Zheng (4 papers)
  3. Bingsheng He (105 papers)
  4. Cheng Liu (130 papers)
  5. Xinyu Chen (66 papers)
  6. Xiaofei Liao (11 papers)
  7. Hai Jin (83 papers)
Citations (65)

Summary

We haven't generated a summary for this paper yet.