Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint Task Assignment and Resource Allocation for D2D-Enabled Mobile-Edge Computing (1902.10017v1)

Published 26 Feb 2019 in cs.IT and math.IT

Abstract: With the proliferation of computation-extensive and latency-critical applications in the 5G and beyond networks, mobile-edge computing (MEC) or fog computing, which provides cloud-like computation and/or storage capabilities at the network edge, is envisioned to reduce computation latency as well as to conserve energy for wireless devices (WDs). This paper studies a novel device-to-device (D2D)-enabled multi-helper MEC system, in which a local user solicits its nearby WDs serving as helpers for cooperative computation. We assume a time division multiple access (TDMA) transmission protocol, under which the local user offloads the tasks to multiple helpers and downloads the results from them over orthogonal pre-scheduled time slots. Under this setup, we minimize the computation latency by optimizing the local user's task assignment jointly with the time and rate for task offloading and results downloading, as well as the computation frequency for task execution, subject to individual energy and computation capacity constraints at the local user and the helpers. However, the formulated problem is a mixed-integer non-linear program (MINLP) that is difficult to solve. To tackle this challenge, we propose an efficient algorithm by first relaxing the original problem into a convex one, and then constructing a suboptimal task assignment solution based on the obtained optimal one. Next, we consider a benchmark scheme that endows the WDs with their maximum computation capacities. To further reduce the implementation complexity, we also develop a heuristic scheme based on the greedy task assignment. Finally, numerical results validate the effectiveness of our proposed algorithm, as compared against the heuristic scheme and other benchmark ones without either joint optimization of radio and computation resources or task assignment design.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Hong Xing (29 papers)
  2. Liang Liu (237 papers)
  3. Jie Xu (467 papers)
  4. Arumugam Nallanathan (155 papers)
Citations (155)

Summary

We haven't generated a summary for this paper yet.