Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shapes from Echoes: Uniqueness from Point-to-Plane Distance Matrices (1902.09959v1)

Published 19 Feb 2019 in cs.CG, cs.SD, eess.AS, and eess.SP

Abstract: We study the problem of localizing a configuration of points and planes from the collection of point-to-plane distances. This problem models simultaneous localization and mapping from acoustic echoes as well as the notable "structure from sound" approach to microphone localization with unknown sources. In our earlier work we proposed computational methods for localization from point-to-plane distances and noted that such localization suffers from various ambiguities beyond the usual rigid body motions; in this paper we provide a complete characterization of uniqueness. We enumerate equivalence classes of configurations which lead to the same distance measurements as a function of the number of planes and points, and algebraically characterize the related transformations in both 2D and 3D. Here we only discuss uniqueness; computational tools and heuristics for practical localization from point-to-plane distances using sound will be addressed in a companion paper.

Citations (9)

Summary

We haven't generated a summary for this paper yet.