Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On homogeneous and inhomogeneous Diophantine approximation over the fields of formal power series (1902.09034v2)

Published 24 Feb 2019 in math.NT

Abstract: We prove over fields of power series the analogues of several Diophantine approximation results obtained over the field of real numbers. In particular we establish the power series analogue of Kronecker's theorem for matrices, together with a quantitative form of it, which can also be seen as a transference inequality between uniform approximation and inhomogeneous approximation. Special attention is devoted to the one dimensional case. Namely, we give a necessary and sufficient condition on an irrational power series $\alpha$ which ensures that, for some positive $\eps$, the set $$ \liminf_{Q \in \mathbb{F}_q[z], \,\, \deg Q \to \infty} | Q | \cdot |\langle Q \alpha - \theta \rangle| \geq \eps $$ has full Hausdorff dimension.

Citations (10)

Summary

We haven't generated a summary for this paper yet.