Papers
Topics
Authors
Recent
2000 character limit reached

On homogeneous and inhomogeneous Diophantine approximation over the fields of formal power series

Published 24 Feb 2019 in math.NT | (1902.09034v2)

Abstract: We prove over fields of power series the analogues of several Diophantine approximation results obtained over the field of real numbers. In particular we establish the power series analogue of Kronecker's theorem for matrices, together with a quantitative form of it, which can also be seen as a transference inequality between uniform approximation and inhomogeneous approximation. Special attention is devoted to the one dimensional case. Namely, we give a necessary and sufficient condition on an irrational power series $\alpha$ which ensures that, for some positive $\eps$, the set $$ \liminf_{Q \in \mathbb{F}_q[z], \,\, \deg Q \to \infty} | Q | \cdot |\langle Q \alpha - \theta \rangle| \geq \eps $$ has full Hausdorff dimension.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.