Papers
Topics
Authors
Recent
Search
2000 character limit reached

Another proof of the Nowicki conjecture

Published 23 Feb 2019 in math.AC and math.RT | (1902.08758v1)

Abstract: Let $K[X_d,Y_d]=K[x_1,\ldots,x_d,y_1,\ldots,y_d]$ be the polynomial algebra in $2d$ variables over a field $K$ of characteristic 0 and let $\delta$ be the derivation of $K[X_d,Y_d]$ defined by $\delta(y_i)=x_i$, $\delta(x_i)=0$, $i=1,\ldots,d$. In 1994 Nowicki conjectured that the algebra $K[X_d,Y_d]{\delta}$ of constants of $\delta$ is generated by $X_d$ and $x_iy_j-y_ix_j$ for all $1\leq i<j\leq d$. The affirmative answer was given by several authors using different ideas. In the present paper we give another proof of the conjecture based on representation theory of the general linear group $GL_2(K)$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.