Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The harmonicity of slice regular functions (1902.08165v3)

Published 21 Feb 2019 in math.CV, math.PR, and math.RA

Abstract: In this article we investigate harmonicity, Laplacians, mean value theorems and related topics in the context of quaternionic analysis. We observe that a Mean Value Formula for slice regular functions holds true and it is a consequence of the well known Representation Formula for slice regular functions over $\mathbb{H}$. Motivated by this observation, we have constructed three order-two differential operators in the kernel of which slice regular functions are, answering positively to the question: is a slice regular function over $\mathbb{H}$ (analogous to an holomorphic function over $\mathbb{C}$) "harmonic" in some sense, i.e. is it in the kernel of some order-two differential operator over $\mathbb{H}$ ? Finally, some applications are deduced, such as a Poisson Formula for slice regular functions over $\mathbb{H}$ and a Jensen's Formula for semi-regular ones.

Summary

We haven't generated a summary for this paper yet.