Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mitigating Metaphors: A Comprehensible Guide to Recent Nature-Inspired Algorithms (1902.08001v2)

Published 21 Feb 2019 in cs.NE

Abstract: In recent years, a plethora of new metaheuristic algorithms have explored different sources of inspiration within the biological and natural worlds. This nature-inspired approach to algorithm design has been widely criticised. A notable issue is the tendency for authors to use terminology that is derived from the domain of inspiration, rather than the broader domains of metaheuristics and optimisation. This makes it difficult to both comprehend how these algorithms work and understand their relationships to other metaheuristics. This paper attempts to address this issue, at least to some extent, by providing accessible descriptions of the most cited nature-inspired algorithms published in the last twenty years. It also discusses commonalities between these algorithms and more classical nature-inspired metaheuristics such as evolutionary algorithms and particle swarm optimisation, and finishes with a discussion of future directions for the field.

Citations (64)

Summary

We haven't generated a summary for this paper yet.