Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Dual Retrieval Module for Semi-supervised Relation Extraction (1902.07814v2)

Published 20 Feb 2019 in cs.CL and cs.LG

Abstract: Relation extraction is an important task in structuring content of text data, and becomes especially challenging when learning with weak supervision---where only a limited number of labeled sentences are given and a large number of unlabeled sentences are available. Most existing work exploits unlabeled data based on the ideas of self-training (i.e., bootstrapping a model) and multi-view learning (e.g., ensembling multiple model variants). However, these methods either suffer from the issue of semantic drift, or do not fully capture the problem characteristics of relation extraction. In this paper, we leverage a key insight that retrieving sentences expressing a relation is a dual task of predicting relation label for a given sentence---two tasks are complementary to each other and can be optimized jointly for mutual enhancement. To model this intuition, we propose DualRE, a principled framework that introduces a retrieval module which is jointly trained with the original relation prediction module. In this way, high-quality samples selected by retrieval module from unlabeled data can be used to improve prediction module, and vice versa. Experimental results\footnote{\small Code and data can be found at \url{https://github.com/INK-USC/DualRE}.} on two public datasets as well as case studies demonstrate the effectiveness of the DualRE approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Hongtao Lin (19 papers)
  2. Jun Yan (247 papers)
  3. Meng Qu (37 papers)
  4. Xiang Ren (194 papers)
Citations (56)