Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Noisy Matrix Completion: Understanding Statistical Guarantees for Convex Relaxation via Nonconvex Optimization (1902.07698v2)

Published 20 Feb 2019 in stat.ML, cs.IT, cs.LG, math.IT, math.OC, math.ST, and stat.TH

Abstract: This paper studies noisy low-rank matrix completion: given partial and noisy entries of a large low-rank matrix, the goal is to estimate the underlying matrix faithfully and efficiently. Arguably one of the most popular paradigms to tackle this problem is convex relaxation, which achieves remarkable efficacy in practice. However, the theoretical support of this approach is still far from optimal in the noisy setting, falling short of explaining its empirical success. We make progress towards demystifying the practical efficacy of convex relaxation vis-`a-vis random noise. When the rank and the condition number of the unknown matrix are bounded by a constant, we demonstrate that the convex programming approach achieves near-optimal estimation errors --- in terms of the Euclidean loss, the entrywise loss, and the spectral norm loss --- for a wide range of noise levels. All of this is enabled by bridging convex relaxation with the nonconvex Burer-Monteiro approach, a seemingly distinct algorithmic paradigm that is provably robust against noise. More specifically, we show that an approximate critical point of the nonconvex formulation serves as an extremely tight approximation of the convex solution, thus allowing us to transfer the desired statistical guarantees of the nonconvex approach to its convex counterpart.

Citations (120)

Summary

We haven't generated a summary for this paper yet.