Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Motion Corrected Multishot MRI Reconstruction Using Generative Networks with Sensitivity Encoding (1902.07430v6)

Published 20 Feb 2019 in cs.CV

Abstract: Multishot Magnetic Resonance Imaging (MRI) is a promising imaging modality that can produce a high-resolution image with relatively less data acquisition time. The downside of multishot MRI is that it is very sensitive to subject motion and even small amounts of motion during the scan can produce artifacts in the final MR image that may cause misdiagnosis. Numerous efforts have been made to address this issue; however, all of these proposals are limited in terms of how much motion they can correct and the required computational time. In this paper, we propose a novel generative networks based conjugate gradient SENSE (CG-SENSE) reconstruction framework for motion correction in multishot MRI. The proposed framework first employs CG-SENSE reconstruction to produce the motion-corrupted image and then a generative adversarial network (GAN) is used to correct the motion artifacts. The proposed method has been rigorously evaluated on synthetically corrupted data on varying degrees of motion, numbers of shots, and encoding trajectories. Our analyses (both quantitative as well as qualitative/visual analysis) establishes that the proposed method significantly robust and outperforms state-of-the-art motion correction techniques and also reduces severalfold of computational times.

Citations (51)

Summary

We haven't generated a summary for this paper yet.