Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hardness of Exact Distance Queries in Sparse Graphs Through Hub Labeling (1902.07055v3)

Published 19 Feb 2019 in cs.DS, cs.CC, and cs.DC

Abstract: A distance labeling scheme is an assignment of bit-labels to the vertices of an undirected, unweighted graph such that the distance between any pair of vertices can be decoded solely from their labels. An important class of distance labeling schemes is that of hub labelings, where a node $v \in G$ stores its distance to the so-called hubs $S_v \subseteq V$, chosen so that for any $u,v \in V$ there is $w \in S_u \cap S_v$ belonging to some shortest $uv$ path. Notice that for most existing graph classes, the best distance labelling constructions existing use at some point a hub labeling scheme at least as a key building block. Our interest lies in hub labelings of sparse graphs, i.e., those with $|E(G)| = O(n)$, for which we show a lowerbound of $\frac{n}{2{O(\sqrt{\log n})}}$ for the average size of the hubsets. Additionally, we show a hub-labeling construction for sparse graphs of average size $O(\frac{n}{RS(n){c}})$ for some $0 < c < 1$, where $RS(n)$ is the so-called Ruzsa-Szemer{\'e}di function, linked to structure of induced matchings in dense graphs. This implies that further improving the lower bound on hub labeling size to $\frac{n}{2{(\log n){o(1)}}}$ would require a breakthrough in the study of lower bounds on $RS(n)$, which have resisted substantial improvement in the last 70 years. For general distance labeling of sparse graphs, we show a lowerbound of $\frac{1}{2{O(\sqrt{\log n})}} SumIndex(n)$, where $SumIndex(n)$ is the communication complexity of the Sum-Index problem over $Z_n$. Our results suggest that the best achievable hub-label size and distance-label size in sparse graphs may be $\Theta(\frac{n}{2{(\log n)c}})$ for some $0<c < 1$.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Adrian Kosowski (22 papers)
  2. Laurent Viennot (32 papers)
  3. Przemysław Uznański (35 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.