Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence to equilibrium for a bulk--surface Allen--Cahn system coupled through a Robin boundary condition (1902.07020v1)

Published 19 Feb 2019 in math.AP

Abstract: We consider a coupled bulk--surface Allen--Cahn system affixed with a Robin-type boundary condition between the bulk and surface variables. This system can also be viewed as a relaxation to a bulk--surface Allen--Cahn system with non-trivial transmission conditions. Assuming that the nonlinearities are real analytic, we prove the convergence of every global strong solution to a single equilibrium as time tends to infinity. Furthermore, we obtain an estimate on the rate of convergence. The proof relies on an extended Lojasiewicz--Simon type inequality for the bulk--surface coupled system. Compared with previous works, new difficulties arise as in our system the surface variable is no longer the trace of the bulk variable, but now they are coupled through a nonlinear Robin boundary condition.

Summary

We haven't generated a summary for this paper yet.