Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Hardware Implementation of Neural Network-based Communication Algorithms (1902.06939v1)

Published 19 Feb 2019 in cs.IT, math.IT, and stat.ML

Abstract: There is a recent interest in neural network (NN)-based communication algorithms which have shown to achieve (beyond) state-of-the-art performance for a variety of problems or lead to reduced implementation complexity. However, most work on this topic is simulation based and implementation on specialized hardware for fast inference, such as field-programmable gate arrays (FPGAs), is widely ignored. In particular for practical uses, NN weights should be quantized and inference carried out by a fixed-point instead of floating-point system, widely used in consumer class computers and graphics processing units (GPUs). Moving to such representations enables higher inference rates and complexity reductions, at the cost of precision loss. We demonstrate that it is possible to implement NN-based algorithms in fixed-point arithmetic with quantized weights at negligible performance loss and with hardware complexity compatible with practical systems, such as FPGAs and application-specific integrated circuits (ASICs).

Citations (10)

Summary

We haven't generated a summary for this paper yet.