Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extending Upward Planar Graph Drawings (1902.06575v1)

Published 18 Feb 2019 in cs.DS and cs.CG

Abstract: In this paper we study the computational complexity of the Upward Planarity Extension problem, which takes in input an upward planar drawing $\Gamma_H$ of a subgraph $H$ of a directed graph $G$ and asks whether $\Gamma_H$ can be extended to an upward planar drawing of $G$. Our study fits into the line of research on the extensibility of partial representations, which has recently become a mainstream in Graph Drawing. We show the following results. First, we prove that the Upward Planarity Extension problem is NP-complete, even if $G$ has a prescribed upward embedding, the vertex set of $H$ coincides with the one of $G$, and $H$ contains no edge. Second, we show that the Upward Planarity Extension problem can be solved in $O(n \log n)$ time if $G$ is an $n$-vertex upward planar $st$-graph. This result improves upon a known $O(n2)$-time algorithm, which however applies to all $n$-vertex single-source upward planar graphs. Finally, we show how to solve in polynomial time a surprisingly difficult version of the Upward Planarity Extension problem, in which $G$ is a directed path or cycle with a prescribed upward embedding, $H$ contains no edges, and no two vertices share the same $y$-coordinate in $\Gamma_H$.

Citations (15)

Summary

We haven't generated a summary for this paper yet.