Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Significance Tests for Neural Networks (1902.06021v3)

Published 16 Feb 2019 in math.ST, cs.LG, stat.ML, and stat.TH

Abstract: We develop a pivotal test to assess the statistical significance of the feature variables in a single-layer feedforward neural network regression model. We propose a gradient-based test statistic and study its asymptotics using nonparametric techniques. Under technical conditions, the limiting distribution is given by a mixture of chi-square distributions. The tests enable one to discern the impact of individual variables on the prediction of a neural network. The test statistic can be used to rank variables according to their influence. Simulation results illustrate the computational efficiency and the performance of the test. An empirical application to house price valuation highlights the behavior of the test using actual data.

Citations (50)

Summary

We haven't generated a summary for this paper yet.