Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fedoryuk values and stability of global Hölderian error bounds for polynomial functions (1902.05972v3)

Published 15 Feb 2019 in math.AG and math.OC

Abstract: Let $f$ be a polynomial function of $n$ variables. In this paper, we study stability of global H\"{o}lderian error bound for a nonempty sublevel set $[f \le t]$ under a perturbation of $t$. In this paper, we give: * Criteria for the existence of a global H\"{o}lderian error bound of $[f \le t]$; * Formulas for computing explicitly the set $$H(f) := { t \in \mathbb{R}: [f \le t]\ \text{has a global H\"{o}lderian error bound}}$$ via some Fedoryuk values of $f$ and definition of threshold for the existence of global H\"{o}lderian error bound of $f$; * Definition of all types of stability of global H\"{o}lderian error bound of $[f \le t]$.

Summary

We haven't generated a summary for this paper yet.