Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Finitary Functors (1902.05788v3)

Published 15 Feb 2019 in math.CT

Abstract: A simple criterion for a functor to be finitary is presented: we call $F$ finitely bounded if for all objects $X$ every finitely generated subobject of $FX$ factorizes through the $F$-image of a finitely generated subobject of $X$. This is equivalent to $F$ being finitary for all functors between `reasonable' locally finitely presentable categories, provided that $F$ preserves monomorphisms. We also discuss the question when that last assumption can be dropped. The answer is affirmative for functors between categories such as Set, K-Vec (vector spaces), boolean algebras, and actions of any finite group either on Set or on K-Vec for fields K of characteristic 0. All this generalizes to locally $\lambda$-presentable categories, $\lambda$-accessible functors and $\lambda$-presentable algebras. As an application we obtain an easy proof that the Hausdorff functor on the category of complete metric spaces is $\aleph_1$-accessible.

Summary

We haven't generated a summary for this paper yet.