Papers
Topics
Authors
Recent
Search
2000 character limit reached

Refined scattering diagrams and theta functions from asymptotic analysis of Maurer-Cartan equations

Published 15 Feb 2019 in math.AG, math.DG, and math.QA | (1902.05765v2)

Abstract: We further develop the asymptotic analytic approach to the study of scattering diagrams. We do so by analyzing the asymptotic behavior of Maurer-Cartan elements of a differential graded Lie algebra constructed from a (not-necessarily tropical) monoid-graded Lie algebra. In this framework, we give alternative differential geometric proofs of the consistent completion of scattering diagrams, originally proved by Kontsevich-Soibelman, Gross-Siebert and Bridgeland. We also give a geometric interpretation of theta functions and their wall-crossing. In the tropical setting, we interpret Maurer-Cartan elements, and therefore consistent scattering diagrams, in terms of the refined counting of tropical disks. We also describe theta functions, in both their tropical and Hall algebraic settings, in terms of flat sections of the Maurer-Cartan-deformed differential. In particular, this allows us to give a combinatorial description of Hall algebra theta functions for acyclic quivers with non-degenerate skew-symmetrized Euler forms.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.