Papers
Topics
Authors
Recent
Search
2000 character limit reached

$\mathbb{Z}_2 \times \mathbb{Z}_2$ generalizations of infinite dimensional Lie superalgebra of conformal type with complete classification of central extensions

Published 15 Feb 2019 in math-ph, math.MP, and math.RT | (1902.05741v2)

Abstract: We introduce a class of novel $\mathbb{Z}_2 \times \mathbb{Z}_2$-graded color superalgebras of infinite dimension. It is done by realizing each member of the class in the universal enveloping algebra of a Lie superalgebra which is a module extension of the Virasoro algebra. Then the complete classification of central extensions of the $\mathbb{Z}_2 \times \mathbb{Z}_2$-graded color superalgebras is presented. It turns out that infinitely many members of the class have non-trivial extensions. We also demonstrate that the color superalgebras (with and without central extensions) have adjoint and superadjoint operations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.