Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Antipodal Hadwiger numbers of finite-dimensional Banach spaces (1902.05593v2)

Published 14 Feb 2019 in math.MG and math.FA

Abstract: Let $X$ be a finite-dimensional Banach space; we introduce and investigate a natural generalization of the concepts of Hadwiger number $H(X)$ and strict Hadwiger number $H'(X)$. More precisely, we define the antipodal Hadwiger number $H_\alpha(X)$ as the largest cardinality of a subset $S \subseteq S_X$, such that $\forall x \neq y \in S \,\,\, \exists f \in B_{X*}$ with [1 \le f(x)-f(y) \,\,\, \textrm{and} \,\,\, f(y) \le f(z) \le f(x) \,\,\, \textrm{for} \,\,\, z \in S.] The strict antipodal Hadwiger number $H'\alpha(X)$ is defined analogously. We prove that $H'\alpha(X)=4$ for every Minkowski plane and estimate (or in some cases compute) the numbers $H_\alpha(X)$ and $H'\alpha(X)$, where $X=\ell_pn, 1 < p \le +\infty$ and $n \ge 2$. We also show that the number $H'\alpha(X)$ grows exponentially in $\dim X$.

Summary

We haven't generated a summary for this paper yet.