Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Resource Management in Energy Harvesting BS Sites through Prediction and Soft-Scaling of Computing Resources (1902.05495v1)

Published 14 Feb 2019 in eess.SP and cs.NI

Abstract: Multi-Access Edge Computing (MEC) is a paradigm for handling delay sensitive services that require ultra-low latency at the access network. With it, computing and communications are performed within one Base Station (BS) site, where the computation resources are in the form of Virtual Machines (VMs) (computer emulators) in the MEC server. MEC and Energy Harvesting (EH) BSs, i.e., BSs equipped with EH equipments, are foreseen as a key towards next-generation mobile networks. In fact, EH systems are expected to decrease the energy drained from the electricity grid and facilitate the deployment of BSs in remote places, extending network coverage and making energy self-sufficiency possible in remote/rural sites. In this paper, we propose an online optimization algorithm called ENergy Aware and Adaptive Management (ENAAM), for managing remote BS sites through foresighted control policies exploiting (short-term) traffic load and harvested energy forecasts. Our numerical results reveal that ENAAM achieves energy savings with respect to the case where no energy management is applied, ranging from 56% to 66% through the scaling of computing resources, and keeps the server utilization factor between 30% and 96% over time (with an average of 75%). Notable benefits are also found against heuristic energy management techniques.

Citations (13)

Summary

We haven't generated a summary for this paper yet.