Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the hom-associative Weyl algebras (1902.05412v3)

Published 12 Feb 2019 in math.RA

Abstract: The first (associative) Weyl algebra is formally rigid in the classical sense. In this paper, we show that it can however be formally deformed in a nontrivial way when considered as a so-called hom-associative algebra, and that this deformation preserves properties such as the commuter, while deforming others, such as the center, power associativity, the set of derivations, and some commutation relations. We then show that this deformation induces a formal deformation of the corresponding Lie algebra into what is known as a hom-Lie algebra, when using the commutator as bracket. We also prove that all homomorphisms between any two purely hom-associative Weyl algebras are in fact isomorphisms. In particular, all endomorphisms are automorphisms in this case, hence proving a hom-associative analogue of the Dixmier conjecture to hold true.

Summary

We haven't generated a summary for this paper yet.