Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How do infinite width bounded norm networks look in function space? (1902.05040v1)

Published 13 Feb 2019 in cs.LG and stat.ML

Abstract: We consider the question of what functions can be captured by ReLU networks with an unbounded number of units (infinite width), but where the overall network Euclidean norm (sum of squares of all weights in the system, except for an unregularized bias term for each unit) is bounded; or equivalently what is the minimal norm required to approximate a given function. For functions $f : \mathbb R \rightarrow \mathbb R$ and a single hidden layer, we show that the minimal network norm for representing $f$ is $\max(\int |f''(x)| dx, |f'(-\infty) + f'(+\infty)|)$, and hence the minimal norm fit for a sample is given by a linear spline interpolation.

Citations (158)

Summary

We haven't generated a summary for this paper yet.