Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximum principle preserving exponential time differencing schemes for the nonlocal Allen-Cahn equation (1902.04998v1)

Published 13 Feb 2019 in math.NA

Abstract: The nonlocal Allen-Cahn (NAC) equation is a generalization of the classic Allen-Cahn equation by replacing the Laplacian with a parameterized nonlocal diffusion operator, and satisfies the maximum principle as its local counterpart. In this paper, we develop and analyze first and second order exponential time differencing (ETD) schemes for solving the NAC equation, which unconditionally preserve the discrete maximum principle. The fully discrete numerical schemes are obtained by applying the stabilized ETD approximations for time integration with the quadrature-based finite difference discretization in space. We derive their respective optimal maximum-norm error estimates and further show that the proposed schemes are asymptotically compatible, i.e., the approximate solutions always converge to the classic Allen-Cahn solution when the horizon, the spatial mesh size and the time step size go to zero. We also prove that the schemes are energy stable in the discrete sense. Various experiments are performed to verify these theoretical results and to investigate numerically the relation between the discontinuities and the nonlocal parameters.

Summary

We haven't generated a summary for this paper yet.