Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A minimal stabilization procedure for Isogeometric methods on trimmed geometries (1902.04937v4)

Published 13 Feb 2019 in math.NA and cs.NA

Abstract: Trimming is a common operation in CAD, and, in its simplest formulation, consists in removing superfluous parts from a geometric entity described via splines (a spline patch). After trimming the geometric description of the patch remains unchanged, but the underlying mesh is unfitted with the physical object. We discuss the main problems arising when solving elliptic PDEs on a trimmed domain. First we prove that, even when Dirichlet boundary conditions are weakly enforced using Nitsche's method, the resulting method suffers lack of stability. Then, we develop novel stabilization techniques based on a modification of the variational formulation, which allow us to recover well-posedness and guarantee accuracy. Optimal a priori error estimates are proven, and numerical examples confirming the theoretical results are provided.

Citations (27)

Summary

We haven't generated a summary for this paper yet.