Papers
Topics
Authors
Recent
2000 character limit reached

Local approximation of the Maximum Cut in regular graphs

Published 13 Feb 2019 in math.CO and cs.DC | (1902.04899v3)

Abstract: This paper is devoted to the distributed complexity of finding an approximation of the maximum cut in graphs. A classical algorithm consists in letting each vertex choose its side of the cut uniformly at random. This does not require any communication and achieves an approximation ratio of at least $\tfrac12$ in average. When the graph is $d$-regular and triangle-free, a slightly better approximation ratio can be achieved with a randomized algorithm running in a single round. Here, we investigate the round complexity of deterministic distributed algorithms for MAXCUT in regular graphs. We first prove that if $G$ is $d$-regular, with $d$ even and fixed, no deterministic algorithm running in a constant number of rounds can achieve a constant approximation ratio. We then give a simple one-round deterministic algorithm achieving an approximation ratio of $\tfrac1{d}$ for $d$-regular graphs with $d$ odd. We show that this is best possible in several ways, and in particular no deterministic algorithm with approximation ratio $\tfrac1{d}+\epsilon$ (with $\epsilon>0$) can run in a constant number of rounds. We also prove results of a similar flavour for the MAXDICUT problem in regular oriented graphs, where we want to maximize the number of arcs oriented from the left part to the right part of the cut.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.