Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Jointly Low-Rank and Bisparse Recovery: Questions and Partial Answers (1902.04731v3)

Published 13 Feb 2019 in math.NA and cs.NA

Abstract: We investigate the problem of recovering jointly $r$-rank and $s$-bisparse matrices from as few linear measurements as possible, considering arbitrary measurements as well as rank-one measurements. In both cases, we show that $m \asymp r s \ln(en/s)$ measurements make the recovery possible in theory, meaning via a nonpractical algorithm. In case of arbitrary measurements, we investigate the possibility of achieving practical recovery via an iterative-hard-thresholding algorithm when $m \asymp r s\gamma \ln(en/s)$ for some exponent $\gamma > 0$. We show that this is feasible for $\gamma = 2$, and that the proposed analysis cannot cover the case $\gamma \leq 1$. The precise value of the optimal exponent $\gamma \in [1,2]$ is the object of a question, raised but unresolved in this paper, about head projections for the jointly low-rank and bisparse structure. Some related questions are partially answered in passing. For rank-one measurements, we suggest on arcane grounds an iterative-hard-thresholding algorithm modified to exploit the nonstandard restricted isometry property obeyed by this type of measurements.

Citations (16)

Summary

We haven't generated a summary for this paper yet.