Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lifting Spacetime's Poincaré Symmetries (1902.04395v1)

Published 26 Jan 2019 in physics.gen-ph

Abstract: In the following work, we pedagogically develop 5-vector theory, an evolution of scalar field theory that provides a stepping stone toward a Poincar\'e-invariant lattice gauge theory. Defining a continuous flat background via the four-dimensional Cartesian coordinates ${xa}$, we lift' the generators of the Poincar\'e group so that they transform only the fields existing upon $\{x^a\}$, and do not transform the background $\{x^a\}$ itself. To facilitate this effort, we develop a non-unitary particle representation of the Poincar\'e group, replacing the classical scalar field with a 5-vector matter field. We further augment the vierbein into a new $5\times5$ f\"unfbein, whichsolders' the 5-vector field to ${xa}$. In so doing, we form a new intuition for the Poincar\'e symmetries of scalar field theory. This effort recasts spacetime data', stored in the derivatives of the scalar field, asmatter field data', stored in the 5-vector field itself. We discuss the physical implications of this `Poincar\'e lift', including the readmittance of an absolute reference frame into relativistic field theory. In a companion paper, we demonstrate that this theoretical development, here construed in a continuous universe, enables the description of a discrete universe that preserves the 10 infinitesimal Poincar\'e symmetries and their conservation laws.

Summary

We haven't generated a summary for this paper yet.